

Event Horizon Telescope

Pulsar & fast radio transient with phased ALMA: current status and beyond

Kuo Liu Iax-Planck-Institut für Radioastronomie Bonn, Germany

ALMA proposal workshop 2023.04.20

2023/04/20

ALMA proposal workshop

Phased-array observing mode with ALMA

- Form tied-array beam towards source;
- Interferometric data recorded in parallel;
- Available from Cycle-8 (new mode!), Band 3;

3 Proposal types 3.1 Regular proposals 10 113.4 mm-VLBI and Phased Array proposals . . 11 121314 14 3.6 Director's Discretionary Time proposals 15

	8.10.5 ALMA Solar Ephemeris Generator Tool
8.11	VLBI Observing Mode
	8.11.1 General VLBI Considerations
	8.11.2 ALMA Considerations for VLBI
	8.11.3 Spectral Line VLBI
	8.11.4 Observing Weak VLBI Targets with Passive Phasing
	8.11.5 Phased-Array Observing
8.12	High Frequency Observing

Pulsars are:

Fast-rotating magnetic dipoles, broad-band emission in radio;

→ cosmic "light houses"

- > Highly regular rotation, precise celestial clocks;
- Probes of / affected by interstellar medium along line-of-sight;

2023/04/20

Unique strength of ALMA

- Highest sensitivity at mm-wavelengths (> 40 GHz), equivalent to a 74-m dish (others < 50 m);</p>
- Excellent location, low and steady system temperature (~40 K at Q-band);
 - (Mostly) Negligible impact by interstellar medium;

2023/04/20

Goddi et al. 2020]

Commissioning of phased array mode

- NSF-funded ALMA Development Study "Pulsars, Magnetars, and Transients with \triangleright Phased ALMA" (PI: J. Cordes, Cornell Univ.);
- Utilized ALMA phasing infrastructure developed by ALMA Phasing Project; \geq
- \geq Passive phasing mode: Adopt phasing from phasors on science source;

Commissioning of phased array mode

- Baseband data recorded on Mark6 in VDIF units;
- Dedicated software developed to convert data into PSRFITS search mode (<u>https://github.com/xuanyuanstar/MPIvdif2psrfits</u>);
- → Product directly reducible by standard pulsar software (*PRESTO, psrfits_util, ...*);

 \rightarrow First pulse profile detection with ALMA !

- → First pulse profile detection of Vela at mm (up to 101 GHz) !
- > Polarisation in line with low-frequency observation (P.A. overlap!);
- Phased-array mode available from cycle-8;

Commissioning of phased array mode

- Scans combined in phase;
- Clear low-frequency power in PSD (red noise, < ~ 20 Hz);
- Vela <u>detected in blind search</u> as the top candidate (harmonics seen by eye!);

- Time-of-arrival (ToA) from 20-s subintegrations;
- ToAs aligned using ephemerides from low-frequency obs (no time offsets !);
- Fitted F0 = 11.1863846(1) Hz;

One epoch, 03-Apr-2017, 29x5-min scans on Sgr A*;

GMVA 2018 (PI: M. Johnson):

Effective one epoch, 17-Apr-2018, 18x5-min scans on Sgr A*;

- VLBI mode, active phasing (on-source calibration);
- Baseband recorded at ALMA, shipped to Bonn correlator;
- Data conversion the same as phasedarray mode;

TAMAMAN

1.5

Phase

Q

- In total ~6000 candidates, visually inspected, no new discoveries (pity!);
- GC magnetar detected from blind search, in all Stokes;
- Detection significance in Q higher than I (33 vs 28);

2 Pulses of Best Profile

× intradiation and the second of the second

.5×10⁴

(s) 10⁴

5000

0

0

0.5

Time

0.8

0.4 0.6 Fraction of Observation

0.2

N)		Search		$N_{\rm I}$	$N_{\rm Q,U,V}$		
		20	17, full	153	61	61	
	2	017,	segments	2,165	111		
es:		203	18, full	217	84		
,	2	2018, segments		2,449	1,693	3	
			[[Liu et a	I. 2021		
ïle			2 Pulses of Best	Profile			
TT	1			1			
U					\mathbf{v}		
			. Made	Adde			
NanMilyini		· ¥·	(ANNA) TVATANANA	MIT NAVINA			
			т. рр. т. т. 				
	···· ·				}		
		104			[
E)	- 0.8	1.5×	-			0.8	
	uo				}	uo	
	0.6 ervati	-			<u> </u>	0.6 ervati	
	Obse	e (s) 10 ⁴		0.000000	J	Obse	
	4 on of	Т				4 on of	
	racti			E /	ſ	-racti	
		5000		EL		1	
	0.2		-			0.2	
						-	
	Щ.	0					
20 15 10 5 Reduced χ^2	2	(U U.5 1 Phase	1.5 4 F	3 2 1 Reduced χ^2	U	

60 40 20 0

Reduced χ^2

1.5

2 Pulses of Best Profile

Lum Mar Mar Mar

* AMM

1.5×10⁴

Time (s) 10⁴

5000

0

0

0.5

Phase

Ι

2 Pulses of Best Prot

· *· Notrinitin / UpperMyinW

5×10⁴

(s) 10⁴

5000

0

0.5

1

Phase

1.5

Time

0.8

0.4 0.6 Fraction of Observation

0.2

C

40 30 20 10 0

Reduced χ^2

Polarization profile of PSR J1745-2900:

- First detection at 3-mm;
- Close to <u>100% linear component</u> !

Linear pol position angle swing:

Well described by Rotating Vector Model \rightarrow α=110 deg, β=-20 deg

$$\tan(\Psi - \Psi_0) = \frac{\sin\alpha\sin(\phi - \phi_0)}{\sin(\alpha + \beta)\cos\alpha - \cos(\alpha + \beta)\sin\alpha\cos(\phi - \phi_0)},$$

Single pulses of PSR J1745-2900:

- Three found (above 7-σ) from blind search for bursts;
- Sub-pulse structure, highly linearly polarized;

Probe into GC Pulsar population: GMVA ALMA ~4% ALMA Q-band ~14%

2023/04/20

Phased-array mode proposal

>10 proposals in 2 cycles, 1 accepted;

Challenges:

- New science cases in the canonical ALMA community;
- New observing mode, technical justification;

High oversubscription rate with ALMA;

Tips (may not work though...):

- Strong science case (novelty, impact, ...);
- Unique strength of ALMA (Can any other instruments do this?);
- Texts straightforward to understand for other (not timedomain) astronomers;
- Attention to technique details (band, Tobs, overhead, ...)