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1. EXECUTIVE SUMMARY

The application of Regularized Maximum Likelihood (RML) imaging techniques to sub-mm inter-
ferometric observations can achieve higher angular resolution and superior image fidelity compared
to traditional imaging methods like CLEAN, as shown in the analysis of the recent Event Horizon
Telescope images of M87. While utilizing RML techniques for ALMA data opens the door for higher
resolution imaging of both archival and future observations, how to most effectively employ RML for
various ALMA measurement sets has previously remained unclear.
Here, we explore the behavior of various prior distributions (maximum entropy, sparsity, total

variation, and total squared variation) on ALMA observations in order to understand how each prior
impacts the final image and in which imaging cases certain priors work best, both individually and
in combination with each other. Deepening our understanding of the interplay between different
priors allows us to identify heuristics for different morphological cases, providing a clearer path
towards getting started with RML for those who may have otherwise relied solely on CLEAN for
their imaging needs. Though we have focused our exploration on protoplanetary disk morphologies,
we identify which prior choices are likely to be suitable for certain types of features, such as sharply
defined rings or diffuse emission.
Tuning the strengths of each prior is a key part of the RML workflow, as these parameters determine

the final outcome of the imaging process. We develop and distill recommendations for incorporating
the image validation procedure cross-validation (CV) into the RML workflow in order to obtain a
final product with the best possible angular resolution and image fidelity. We detail the general CV
process, which involves testing subsets of data in multiple rounds to assess general model performance,
including different methods of CV and nuances that accompany image validation for RML.
RML imaging techniques can require a large amount of computational resources, especially for

images with a high number of pixels or spectral line data with many velocity channels. This can
create a computational burden that must be overcome in order to make RML a practical and accessible
method of imaging. We have successfully used the open-source Python package MPoL with GPU
acceleration to quickly (on order a few seconds) optimize an image with RML. Harnessing the power
of GPUs with MPoL also allows for completion of CV for a set of model parameters in only a few
minutes.
Lastly, we compare RML performance to CLEAN performance, providing a direct comparison of

RML and CLEAN images for the protoplanetary disk HD 143006. Details of the RML workflow
for this specific case are provided, as well as more general recommendations geared towards the
community for using RML imaging techniques on ALMA measurement sets.

2. BACKGROUND

The Atacama Large Millimeter/submillimeter Array (ALMA) is capable of observing sources at high
angular and spectral resolution. With its 66 12-m antennas and baselines of up to 16 km, ALMA
can achieve 20 mas resolution at 230 GHz, placing it at the forefront of submillimeter interferometry.
Obtaining high resolution images has enabled progress on a myriad of science goals across a variety
of subfields, such as characterizing the dust and gas substructures of protoplanetary disks (e.g.
ALMA Partnership et al. 2015; Andrews et al. 2016, 2018; Huang et al. 2018). While high resolution
observations from interferometers like ALMA have already furthered our understanding of disks,
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galaxies, black holes, and more, there are still many outstanding questions that will not be answered
until we can resolve sources to even smaller scales.
Interferometers are composed of a number of individual antennas, with each pair of antennas defin-

ing an additional baseline. Because there are a finite number of antennas in the interferometer, every
possible baseline length cannot be represented during an observation. This leads to incomplete sam-
pling of spatial frequencies (u, v), regardless of the array configuration. As a result, interferometers
incompletely and noisily sample the visibility function of an astronomical source, given by

V(u, v) =
∫∫

I(l,m) exp {−2πi(ul + vm)} dl dm. (1)

Here, V(u, v) is the visibility function parameterized by spatial frequencies u and v, and I(l,m) is
the sky brightness distribution, where l = sin(∆α cos δ) and m = sin(∆δ) for right ascension α and
declination δ.
The visibility function V and the sky brightness distribution I are related by Fourier transform.

However, because V is incompletely sampled, the final image product depends on which assumptions
are made about the unsampled spatial frequencies. If all unsampled spatial frequencies are set to
zero power, the Fourier transform of the visibilities creates the dirty image. The dirty image can
be thought of as a convolution of the true sky brightness distribution and the instrument point
spread function (PSF), or dirty beam. Because beam sidelobes add image artifacts that are not
representative of the true source sky brightness, dirty images require processing to better reconstruct
the sky brightness.
Image-plane deconvolution algorithms like CLEAN have been the gold standard in radio astronomy

for decades. CLEAN is currently one of the most popular and well-supported imaging methods in
the community, and leans heavily on the above idea that the dirty image is the result of the true sky
brightness being convolved with the PSF of the instrument. CLEAN works by beginning with the
dirty image and iteratively deconvolving beam sidelobes while building up a model representation
of the sky brightness (Högbom 1974). The model is built from CLEAN components, usually Dirac
δ-functions or Gaussians, which are placed at the location of the brightest pixel in the dirty image.
Deconvolution occurs when the CLEAN component is convolved with the dirty beam and subtracted
from the dirty image. This process repeats until either a certain number of iterations has been
reached, or the dirty image reaches some noise threshold. There are two products at the end of the
CLEANing process: the residual image (originally the dirty image, but now contains only residuals
after deconvolution) and the CLEAN model (composed of CLEAN components). The CLEAN model
is then convolved with the CLEAN beam, which is usually a Gaussian fit to the main lobe of the
dirty beam. Finally, the residual image is added to obtain the final CLEANed image.
Although CLEAN has contributed to many advancements in astronomy, it does have limitations.

First, while CLEAN does attempt to remove imaging artifacts caused by the PSF sidelobe response,
it does so imperfectly. CLEAN components are typically simplistic (e.g. a Gaussian), which may
not be suitable for capturing certain morphologies, such as sharp edges or rings. Because CLEAN
images are made by adding components that are unlikely to accurately represent a spatially-resolved
source, the final image is usually convolved with a final restoring beam. This convolution makes the
CLEANed image more visually pleasing, but generally acts as a low pass filter, spatially broadening
any high resolution information in the CLEAN model. In other words, convolution with the CLEAN
beam imposes a resolution limit on the final image. Other drawbacks include the computation speed,
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as CLEANing even a small image can take several hours. Lastly, CLEAN is a nonlinear procedural
method of image restoration rather than a true optimization algorithm. There are many user-set
algorithm parameters that affect the outcome of the CLEANing process (e.g. stopping criteria),
many of which do not have a clear best choice that corresponds with optimal image fidelity.
With modern computing abilities, Regularized Maximum Likelihood (RML) techniques for imaging

have become powerful alternatives to more traditional deconvolution procedures like CLEAN. RML
techniques have been well-established in the field for decades (e.g. Cornwell & Evans 1985; Narayan &
Nityananda 1986), and have been shown to achieve higher angular resolution in sub-mm continuum
observations than CLEAN. For example, Pérez et al. (2019) successfully used RML techniques to
obtain an image of the protoplanetary disk HD 169142 with higher resolution than the corresponding
CASA tclean image with Briggs weighting.
At its core, RML is simply an optimization problem; the image is constructed by maximizing some

likelihood function defined for some image parameterization. A common way to parameterize the
image is by the set of pixel intensities, allowing each pixel to change freely during optimization.
The likelihood function encompasses assumptions about the noise properties of the data, as well as
any additional information that should be taken into account during imaging. The high degree of
flexibility built into the RML imaging process makes it possible to significantly improve image fidelity
compared to the dirty image, and because RML techniques require no restoring beam, significantly
improve angular resolution. These improvements also hold up to comparisons with CLEAN. Chael
et al. (2016) show that for compact sources the normalized root-mean-squared error (NRMSE),

NRMSE =

√√√√∑n2

i=1 |I′i − Ii|2∑n2

i=1 |Ii|
2

, (2)

where I ′ is the restored image and I is the true image, is minimized at a considerably smaller beam
size with RML techniques compared to CLEAN.
However, optimizing the model to obtain the best possible image from the sample visibilities with

RML is not trivial, as there are an infinite number of possible sky brightness distributions that
correspond to the incompletely-sampled spatial frequencies. The dirty image, generated from the
assumption that the unsampled frequencies do not contain any power (i.e. they are set to zero), is
just one of many possible maximum likelihood solutions. Regardless of the source morphology and
the array configuration, however, this assumption is unlikely to be valid. Including thoughtful choices
of priors (via the likelihood function) in the RML workflow allows for substantial improvement of
the final image compared to both the dirty image and deconvolution-based procedures like CLEAN.
There have already been many instances of interferometric observations benefitting from RML imag-

ing techniques. A well-known example is the analysis of the Event Horizon Telescope images of M87.
Event Horizon Telescope Collaboration et al. (2019) successfully used two independently-developed
RML pipelines to obtain high-resolution images of M87. In order to directly compare with CLEAN
results, the RML images were restored with beams large enough to reduce the resolutions to that of
the CLEAN image. The blurred RML images characterized the ring diameter and asymmetry con-
sistently with the CLEAN image, showing that RML methods can produce higher resolution images
at similar image fidelity requirements. RML imaging techniques have also contributed to analyses
of ALMA continuum observations of protoplanetary disks. Cárcamo et al. (2018) used RML with
entropy-based regularizers on ALMA continuum observations of HL Tau, finding that RML methods
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can not only achieve better resolution than CLEAN, but also remove systemic background noise more
effectively. Yamaguchi et al. (2020) applied RML imaging techniques with sparsity and total squared
variation regularizers to ALMA observations of the protoplanetary disk around HD 142527, finding
that RML techniques result in improved image fidelity and higher angular resolution compared to
CLEAN images.
This paper is organized as follows. We describe the data used in this study and how it was

prepared for RML imaging in section 3. In section 4 we discuss the theory of RML imaging, including
the mathematical forms of various regularizers, a technical overview of the RML imaging Python
package MPoL, and image validation procedures. We discuss the behavior and attributes of different
regularizing terms in section 5, followed by a discussion on characterizing the resolution of RML
images and a more thorough examination of image validation procedures in section 6. Finally, we
present our recommendations for developing a successful RML workflow for ALMA measurement sets
in section 7.

3. DATA

Throughout this study, we used two reference ALMA visibility datasets. The first is a small, mock
dataset created from the ALMA logo. Its small size means that it can be easily stored and processed
on servers with limited computational means1. A full accounting of the processing steps are available
on the mpoldatasets repository;2 we briefly summarize them here. The logo was converted to a
greyscale image, Fourier transformed, apodized with a Blackman Harris window function (to remove
spatial frequencies substantially higher than will be sampled by the target array), and saved as a
FITS file. We then used simobserve (CASA version 6.1 McMullin et al. 2007) with the C43-7 reference
ALMA configuration from simobserve (alma.cycle7.7.cfg), to “observe” the source as it transits
zenith for 1 hour under median conditions. Example RML images generated from this dataset can
be seen in Figure 2.
The second dataset we used in this study is a real Band 6 ALMA dataset containing the observations

of the protoplanetary disk hosted by HD 143006 obtained by the DSHARP survey (Andrews et al.
2018), achieving a resolution of 45 milliarcseconds. We chose this protoplanetary disk because of its
public and well-known nature, as well as its potential for structures at small spatial scales, including
azimuthal asymmetries. The visibilities were originally calibrated by the DSHARP team following
the standardized CASA procedures described in Andrews et al. (2018). The full listing of archival
observations can be found in Andrews et al. (2018, Table 3), and the calibrated visibilities can be
downloaded from the DSHARP archive3. We performed one additional step of calibration beyond
that of the DSHARP team. We found that the definition of the visibility weights was not consistent
across all of the archival datasets, most likely because the treatment of statistical weights frequently
changed in 4.x versions of CASA used to originally calibrate the visibilities. We found empirical
weight scalings for each dataset by creating a tclean model, subtracting it from the visibilities,
and examining the scatter in the visibility residuals compared to the Gaussian envelope expected
from the thermal weights. A walkthrough of this rescaling process is described as part of the MPoL
documentation4 and is documented in the mpoldatasets repository5.

1 Such as those used for continuous integration of code on GitHub, which is one reason why this dataset appears in
many of the tutorials that accompany the MPoL documentation

2 https://github.com/MPoL-dev/mpoldatasets
3 https://almascience.eso.org/almadata/lp/DSHARP/MSfiles/HD143006 continuum.ms.tgz
4 https://mpol-dev.github.io/visread/tutorials/rescale AS209 weights.html
5 https://github.com/MPoL-dev/mpoldatasets/tree/main/products/HD143006-DSHARP-continuum

https://github.com/MPoL-dev/mpoldatasets
https://almascience.eso.org/almadata/lp/DSHARP/MSfiles/HD143006_continuum.ms.tgz 
https://mpol-dev.github.io/visread/tutorials/rescale_AS209_weights.html
https://github.com/MPoL-dev/mpoldatasets/tree/main/products/HD143006-DSHARP-continuum
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4. FORWARD MODELING WITH RML

From a probabilistic viewpoint, RML imaging aims to maximize the posterior distribution of the
image, given the dataset and specified priors. Starting with Bayes theorem and acknowledging that
the model parameterization will remain fixed6, we obtain

p (I | D) ∝ p (D | I) p(I) (3)

where p(I | D) is the posterior distribution to be maximized, p(D | I) is the likelihood function, and
p(I) is the prior distribution.
We make assumptions about the data generating process via the likelihood function. In computing,

however, the use of the log likelihood is typically favored. Assuming that the noise is uncorrelated
and follows a normal distribution with standard deviation σ, the natural logarithm of the likelihood
function is

ln p (D | I) = −N ln(
√
2πσ)− 1

2

N∑
i

(
Vi − Vi

σ

)2

. (4)

Here, Vi is measured visibility data at a (u, v) point and Vi is the predicted value of the model for
the same (u, v). Except for the factor of 1/2, the rightmost term above is simply a χ2 distribution,

χ2(D | I) =
N∑
i

(
Vi − Vi

σ

)2

, (5)

and the log likelihood can be expressed as

ln p (D | I) = −1

2
χ2(D | I) + C. (6)

We can now see that in order to maximize the log likelihood (which, if the priors are flat, will also
maximize the posterior), it is necessary to minimize χ2(D | I). Rather than maximizing the log
likelihood, however, in computing it is more common to minimize the negative log likelihood, given
by

Lnll(I) = − ln p (D | I) = 1

2
χ2(D | I). (7)

In the machine learning community, it is common to focus on the optimization of some metric that
can be described by a loss function (e.g. Bishop 2006; Hastie et al. 2009; Murphy 2012; Deisenroth
et al. 2020). A loss function is some function which, when minimized, yields optimal parameter
values. The negative log likelihood is a reasonable choice of loss function for data with Gaussian
uncertainties before considering any regularization. Regularization allows additional information to
be considered during optimization via the loss function, lessening the ill-conditioned nature of the
problem. While the Bayesian framework involves maximizing the posterior distribution given some
additional prior probability distributions, the maximum likelihood perspective involves maximizing
the likelihood function by mimimizing the loss function. We use the notation Lloss(I) to describe loss

6 We focus on models that are discretely parameterized by pixel intensities, but there are many other ways to parame-
terize an image model which we do not discuss here (e.g., parameterization by wavelet coefficients as in Carrillo et al.
2014). Regardless, the chosen model parameterization p (D) must remain fixed to obtain the proportional relationship
expressed in Equation 3.
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Figure 1. An example of how incomplete (u, v) sampling can impact the appearance of the dirty image.
a) The (u, v) sampling of the HD 143006 dataset. The centermost visibilities correspond to the shortest
baselines, while the outermost visibilities correspond to the longest. Even though there are long-baseline
visibilities present in the dataset, they are mostly sparsely sampled. Gaps in (u, v) space at a variety of
baselines create artifacts in the dirty images because the power at these unsampled spatial frequencies is
assumed to be zero. b) The dirty image made with MPoL using uniform weighting, which favors resolution
over sensitivity. c) The dirty image made with MPoL using Briggs weighting with a robust parameter of
0.0, which creates a more balanced tradeoff between resolution and sensitivity.

terms within the loss function, such as the negative log likelihood or any regularizers being used to
better specify the problem.
Though the negative log likelihood can function independently as a loss function, it provides no

additional information about what characteristics the final image should have, yielding an unregu-
larized fit. In radio interferometry, minimizing the negative log likelihood of the data alone often
results in an undesirable final image. This is due to the incomplete sampling of the visibility function
at certain spatial frequencies; if the visibility function has significant power in (u, v) space that is
unsampled or only sparsely sampled, minimizing a loss function with no regularization will result in
an image that deviates from the true sky brightness distribution. Figure 1 shows the (u, v) sampling
of the HD 143006 dataset alongside the dirty images made by averaging visibilities with both uni-
form and Briggs weighting. The visibility function likely has power at some of the unsampled spatial
frequencies. When these unsampled but presumably nonzero powers are set to zero, the resulting
dirty images contain artifacts that are not likely to be physical, such as blotchy emission or noisy
background.
In cases like these, one can mitigate these effects by incorporating regularization into the imaging

workflow. The image can be regularized by incorporating prior knowledge about the source morphol-
ogy into the model, pushing the final image to adopt certain characteristics during the optimization
process. Such constraints can be included by adding regularizing terms to the loss function. For
example, a loss function that includes regularization could be of form

L(I) = Lnll(I) + λALA(I) + λBLB(I), (8)

but more or fewer losses could be included depending on the needs of the specific problem. Each λ

value allows the strength of each regularizer to be tuned. Tuning this parameter is important in order
to prevent over-fitting the model, as a poorly-weighted regularizing term will result in a final image
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that is a poor match to the data. However, a loss function can include terms with a wide variety
of functional forms, and whether a λ prefactor is required simply depends on the functional form of
each regularizer. Note that these regularizing terms correspond to priors in the Bayesian framework,
as they both impose some existing knowledge or expectation about the source on the model.
It is possible to proceed with only a handful of parameters to describe the model. For example, a

parametric model for a protoplanetary disk might be defined as a set of annular rings, each further
specified by their radius and intensity. However, we may not know enough about the source to place
such constraints on the model, and a non-parametric approach can offer more flexibility during the
optimization process. Consider an image with N ×N pixels. Each pixel has some intensity IN such
that the image is described by a set of pixel intensities,

I = {I1, I2, . . . , IN2} . (9)

We can use the intensity of each pixel in the image cube as model parameters, allowing each pixel to
vary freely. This introduces a great deal of flexibility into the imaging process, and a loss function
with carefully-tuned regularizing terms can harness this flexibility to significantly improve image
fidelity compared to a parametric fit.

4.1. Minimizing the Loss Function

Minimizing the loss function maximizes the likelihood function, giving a “best fit” image that can
change based on what kind of regularization is implemented. There are a wide variety of optimization
algorithms that can be used for this minimization problem. We use gradient descent methods, which
are iterative processes with several components. First, the gradient of the loss function is computed
with respect to model parameters,

∇L(I) =

{
∂L(I1)

∂I1
,
∂L(I2)

∂I2
, · · · , ∂L(IN

2)

∂IN2

}
. (10)

Here, the set of model parameters is equivalent to the set of pixel intensities. In order to begin
optimization, it is necessary to select an initial set of pixel intensities to be evaluated against the loss
function in the first iteration. There are multiple options for setting the initial set of pixel intensities.
The simplest starting point is a constant image; if all model pixels are given the same initial intensity,
the optimization process starts from a completely blank slate.
However, a faster alternative is initializing the model with some prior knowledge about the true sky

brightness. In most cases we already have some initial information about the source: the dirty image.
Although the dirty image is not the desired final result, it is the Fourier transform of the sampled
visibilities and one maximum likelihood solution to the data. Because of this, it contains useful
information about the sky brightness and provides a starting point for the model that is probably
closer to the final regularized image than constant pixel values. It is also advantageous to start
optimization with the dirty image because the model will likely converge in fewer iterations than if
the initial state of the parameters had been uniform (or in any other configuration that is unlikely
to represent the true sky brightness, as shown in the third column of Figure 2).
While the dirty image or an image of uniform intensity are reasonable starting points, the initial

values of the model parameters could be essentially anything. If the loss function space is convex
(i.e. has only a single global minimum), the model will converge to the same result regardless of the
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initial state of the parameters. The loss surface is convex for the regularizing terms presented here
(e.g. see Akiyama et al. 2017a; Chael et al. 2018; Yamaguchi et al. 2020), so a poor choice of initial
pixel intensities comes only at the cost of requiring more iterations to converge on a minimum loss
value.
Figure 2 shows how different sets of initial pixel intensities impact the speed of convergence while

regularizing a sky brightness projection of the ALMA logo with added noise. We apply entropy,
sparsity, and total squared variation regularizers to the loss function. The dirty image converges first,
the blank image second, and the custom image last. We use a custom image of a dog, intentionally
selecting a set of pixel intensities with no similarity to the true image. Though the custom set of
initial pixel intensities takes significantly longer to converge, it ultimately does converge on the same
result as the initial dirty and uniform images, showing that the final result is not sensitive to the
initial state of the model. Figure 2 also shows how the model image is updated during optimization:
after each iteration, the gradient of the image is added to the model parameters, creating a new
model image. This process repeats until the loss function converges on a minimum, and the gradient
is zero or approximately zero.
One important consideration with the gradient descent method is step size. Steps that are too

large could overshoot the minimum, causing the algorithm to diverge. The smaller the step size, the
more iterations will be required for the loss function to converge on a final value, meaning that steps
that are too small can quickly become computationally expensive. It is worthwhile to check that the
loss function has actually converged on a value; an image that has not been fully optimized can be
misleading as it is not actually the maximum likelihood solution. For example, in Figure 2 the model
images at 50 and 150 iterations look quite similar. However, the magnitude of the gradient image is
reduced by several orders of magnitude at 150 iterations. We can also see that the the loss function
has not yet been minimized at 50 iterations, especially when the model was initialized with a blank
or custom image. Though it may be tempting to run fewer iterations in the interest of computational
speed, one should take care to ensure that the loss function has fully converged.

4.2. Regularizers

The actual changes to the model image throughout the optimization process are guided by the
choice of regularizers included in the loss function. A regularizer can be thought of as a stabilizing
force on the image parameters, for example, penalizing pixels that poorly match the expected sky
brightness. Returning to a Bayesian viewpoint, including a regularizer is analogous to imposing a
non-uniform prior on the data (Sivia & Skilling 2006). Implementing regularizers in the imaging
process effectively allows us to make assumptions about unsampled and noisily sampled frequencies
based on our prior knowledge of the source. In practice, one may need to use a combination of several
regularizers to obtain a final image that best represents the true sky brightness.
Different types of regularizers vary in their implementations and subsequent effects on the im-

age. Some regularizers are implemented by construction, meaning there is some part of the imaging
workflow that inherently imposes the regularizer without needing to tune its strength or other hyper-
parameters. Other regularizers are imposed directly on image pixels. These pixel-based regularizers
typically have an associated strength factor that determines how great the overall effect on the final
image will be. In addition, they may require tuning internal parameters which affect the pixel-by-
pixel behavior of the regularizer. Lastly, it is possible to regularize not over the image itself, but
over some quantity derived from image properties. These regularizers affect pixel values indirectly
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Figure 2. Visualizing the regularization process using gradient descent optimization to minimize the loss
function for different initial pixel values. A combination of entropy, sparsity, and total squared variation
regularizing terms were used on a mock dataset made from the ALMA logo with added noise. Each row
shows the state of the model and gradient image at a different number of iterations during optimization. The
leftmost columns show the sky brightness and gradient images of a model initialized with the dirty image,
the middle columns show the same for a model initialized with a blank image, and the rightmost columns
show the same for a model initialized with a custom image (in this case, an image of a dog). From left to
right, this can be read as the best to worst guess for the true sky brightness distribution. In each gradient
image, positive (negative) values are shown in red (blue), and ∇ denotes the magnitude of the gradient
vector (i.e. the gradient value of each pixel added in quadrature). All sky brightness and gradient images
are plotted on the same color scale. A good set of initial pixel values like the dirty image quickly converges
to the final image, while a poor guess is more computationally expensive to achieve the same result.
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based on how changes to the model sky brightness impact the derived quantity. Here we discuss the
functional form and motivation for each regularizer we tested.

4.2.1. Image Positivity

Image positivity requires that pixel values be non-negative. From a physical standpoint it makes
sense to assume that the intensity value of a given pixel must be positive, as the flux of the observed
source must also be positive (or zero, if there is no flux). Though we do not have intensity information
at all spatial frequencies, we can use image positivity regularization to impose a restriction on the
final image that each pixel must have a non-negative intensity value.
Because positivity can be enforced implicitly through the definition of the model image, image

positivity is an example of a regularizer implemented by construction. Despite the apparent simplicity
of requiring positive pixel values, there are several possible ways to impose image positivity. The
rectified linear unit (ReLU) activation function,

fReLU(x) = max (0, x) , (11)

returns an unchanged input value if the input is positive, and returns zero otherwise. However,
interferometers have a finite number of baselines and do not completely sample the visibility function
of the source. Considering that the visibility function and sky brightness distribution are related
by Fourier transform (Equation 1), this incompleteness causes negative-valued pixels in the sky
brightness image. This is true even for perfectly-measured visibilities, though noise considerations
further complicate the issue.
Using a modified version of the ReLU function can ensure that each sky brightness intensity pixel

is strictly positive while still retaining some information about the relative brightness of each pixel.
One such example is Softplus, which has the functional form

fSoftplus(x) =
1

β
∗ log(1 + exp(β ∗ x)), (12)

where β is a sharpness parameter. This is a smooth approximation to the ReLU function, but instead
of setting all negative values to zero, Softplus allows negative input values to have a positive nonzero
output without drastically changing large positive input values. In other words, the Softplus mapping
retains information about the image from the sampled visibilities while eliminating the problem of
negative-valued pixel intensities caused by the incomplete visibility sampling.

4.2.2. Maximum Entropy

In general, maximum entropy regularization promotes images with similar pixel values to a given
set of reference pixels. Maximum entropy regularization is well-established in radio interferometric
imaging, and is known to achieve higher resolutions than corresponding CLEAN images (Cornwell
& Evans 1985; Narayan & Nityananda 1986). Following the definition in Event Horizon Telescope
Collaboration et al. (2019), the maximum entropy loss is formulated as

L =
1∑
i Ii

∑
i

Ii ln
Ii
pi
, (13)

where pi is a reference pixel value against which other pixels are compared. These reference pixels
could be as simple as a “blank” image of uniform intensity (e.g. Cárcamo et al. 2018), or they could
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take additional knowledge about the source into account. For example, Event Horizon Telescope
Collaboration et al. (2019) used circular Gaussian images for the set of pi.
The maximum entropy loss is a pixel-based regularizer, as it is applied to each model image pixel

before the final loss value can be calculated. The strength of the regularizer should be adjusted
depending on the specific imaging case, so when maximum entropy regularization is incorporated
into a loss function, a λ prefactor should be included and tuned as needed.

4.2.3. Sparsity

Sparsity regularization uses the L1 norm to reduce the impact of unneeded pixels, promoting a
final image that is a sparse collection of nonzero pixels. Originally stemming from the least absolute
shrinkage and selection operator (lasso, see Tibshirani (1996)), sparsity is a pixel-based regularizer
that has successfully been applied to radio interferometric imaging to achieve high-resolution images
around black holes and protoplanetary disks (e.g Honma et al. 2014; Akiyama et al. 2017a; Kuramochi
et al. 2018; Event Horizon Telescope Collaboration et al. 2019; Yamaguchi et al. 2020).
The sparsity loss is formulated as

L =
∑
i

|Ii| . (14)

Sparsity regularization reduces the impact of unneeded pixels (i.e., promoting a final image that is a
sparse collection of nonzero pixels), making it a useful regularizer when the true sky brightness of a
source is likely to be sparse.
Because the sparsity regularizer encourages mostly blank images, faint or diffuse emission may

be removed during the optimization process. However, blank regions need not be contiguous, so
including a sparsity term will not necessarily regularize out interesting features like disks with rings
or other substructures. Regardless of the source morphology, sparsity regularization may not be as
effective if the angular pixel size is smaller than the angular area of the emission. However, even if
the source is unlikely to be sparse in the image domain (e.g. extended sources like galaxies), sparse
regularization has been shown to successfully reconstruct these images by transforming the data such
that it is sparse in some other domain (Li et al. 2011; Carrillo et al. 2012). When regularizing with
sparsity, a λ prefactor should be included and tuned to adjust the overall strength of the sparsity
term.

4.2.4. Total Variation

Total variation (TV) regularization promotes images with sharp edges at areas with significant
changes in intensity, and relatively smooth areas in between. As a result, an image made with
a strong TV term is likely to have a sparse intensity gradient, as the sharp edges are the main
contributing components. In other words, the TV regularizer promotes similarity (or smoothness)
between adjacent pixels unless the difference is significant, in which case a change in intensity is
needed. TV regularization has been used with success on its own and in combination with other
regularizers for astronomical interferometric imaging (e.g. Wiaux et al. 2010; Akiyama et al. 2017b,a).
The TV loss is defined by (Rudin et al. 1992) as

L =
∑
l,m,v

√
(Il+1,m,v − Il,m,v)

2 + (Il,m+1,v − Il,m,v)
2 + ϵ. (15)
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The image cube has dimensions where l corresponds to right ascension, m corresponds to declination,
and v corresponds to the velocity channel in the cube. The ϵ term is an optional softening parameter
which determines how pixel-to-pixel variations within the image slice will be penalized. If adjacent
pixels vary more than ϵ the total loss will greatly increase, so TV regularization favors minimal
variation between adjacent pixels. The TV regularizer is another type of pixel-based regularizer,
requiring a λ prefactor to adjust the overall strength of the regularizer. While ϵ determines how
strongly the TV regularizer should penalize pixel-to-pixel variation internally, λ determines how
much the entire TV regularizing term should be weighted in the loss function.

4.2.5. Total Squared Variation

The total squared variation (TSV) regularizer is a variant of the TV regularizer, still summing
the brightness differences between adjacent pixels. However, by not taking the square root of the
differences, the TSV prior results in images with smoother edges (Kuramochi et al. 2018). The TSV
regularizer,

L =
∑
l,m,v

(Il+1,m,v − Il,m,v)
2 + (Il,m+1,v − Il,m,v)

2 , (16)

is functionally similar to the TV prior, except the expression inside of the summation has been
squared.
For astronomical targets that with diffuse features, TSV prior may outperform the TV prior because

the edge-smoothing effects better match the expected morphology in the image (e.g. Kuramochi et al.
2018; Chael et al. 2018). As with other pixel-based regularizers, a λ prefactor should be included
with the TSV regularizer in order to control the intensity of the TSV regularization.

4.3. Cross-Validation

One way to determine whether the regularization (whether it be the strength of the λ prefactors or
the functional form of the regularizer itself) is appropriately tuned is by using cross-validation (CV).
CV aims to find optimal parameter values by determining how consistently the model performs given
variations in the data set, working on the concepts of training data and testing data. Training data
is used to find the model which minimizes the loss function, undergoing the normal optimization
process to find the best-fit image given a specified loss function. Testing data is used for comparison
against the model optimized with the training data. If some parameter space (such as a set of spatial
frequencies) is not covered by the training data, but is covered by the testing data, then comparing
the trained model to the testing data effectively measures the predictive power of the model within
that parameter space. In other words, testing data allows us to see how well the model predicts new
data, and better models correspond to more similarity with the testing data.
In principle, one would like to have enough data to train the model (i.e. run the optimization

process with the selected regularizers) and then use a completely separate set of data to test the
model. Unfortunately, data is often too limited for this approach; using enough data to train the
model typically leaves only a small amount for testing, resulting in a noisy estimate of the predictive
performance of the model (Bishop 2006). CV circumvents this limitation by partitioning all the
measured visibility data V into subsets such that Vsubset({u, v}) ⊂ V, fitting the model on one or
more subsets, and testing the model on the remaining subsets. One popular method is K-fold CV,
which performs this process in multiple rounds, rotating which subsets are used for testing (e.g.
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Akiyama et al. 2017a,b; Yamaguchi et al. 2020). In this case, data are partitioned into K subsets.

V


V0({u, v})
V1({u, v})
...

VK({u, v})

(17)

After partitioning, K − 1 subsets are combined to form the training data Vtrain and the remaining
subset is used for testing. The model is optimized using Vtrain and any model specifications like
regularizers. Then, the trained model visibilities are compared against the subset of visibilities that
were withheld from the training data. Because

p (Vtest | Vtrain) ∝ exp

[
−1

2
χ2(Vtest | Vtrain)

]
, (18)

a smaller χ2 value corresponds to a better match between the trained visibilities and the testing data.
This process is repeated K times such that each subset functions as the testing data once. We

obtain a final CV score by summing the χ2 values calculated for each of the K CV rounds. A low
CV score indicates that the model is well-fitted to the training data. In the case of poorly chosen or
poorly tuned regularizers, the model may not fit the training data and can result in a set of visibilities
that strongly deviates from the testing visibilities. This large deviation would cause a large CV score,
an indicator that the model needs revision.
There are many different ways in which one could partition data for K-fold CV. We explore CV

using two methods of partitioning: uniform and dartboard. Uniform partitioning utilizes K subsets
that are composed of randomly-selected visibility grid cells. Each grid cell is only used in one subset,
so grid cells are randomly drawn without replacement. CV with uniform partitioning tests how the
model responds to new data in comparable u-v space to the training data.
Dartboard partitioning splits visibilities along polar grid lines, creating azimuthal and radial bins

consisting of many grid cells. Each of the K subsets consists of randomly-drawn dartboard cells
without replacement. Figure 3 shows an example of dartboard partitioning. CV with dartboard
partitioning shows how the model handles extrapolation to unsampled u-v space. Dartboard parti-
tioning aims to simulate the irregular u-v sampling obtained from different ALMA execution blocks,
across slightly different array configurations.

4.4. The MPoL Package

Million Points of Light (MPoL)7 is an open-source Python package designed for RML imaging. As
part of the imaging workflow, MPoL provides functionalities for gridding loose visibilities, visualizing
dirty images, building custom image models, optimizing the data with respect to user-selected pos-
teriors, and more. MPoL is built on PyTorch (Paszke et al. 2019), an open-source machine learning
package that uses tensors optimized for use with CPUs or GPUs. PyTorch provides the ability to
calculate gradients on tensors — a key part of the RML imaging workflow with MPoL.
Optimizing images can quickly become computationally expensive, especially if the dataset is an

image cube with a large number of pixels and many channels. For this reason, MPoL takes advantage
of the power of GPUs, which can greatly reduce computation time compared to CPUs.

7 https://mpol-dev.github.io/MPoL/

https://mpol-dev.github.io/MPoL/
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Figure 3. Visualizing the data partitioning for K-fold CV (K = 5) of HD 143006 using the dartboard
scheme. The left column shows 4 subsets combined and used to fit the model, while the middle column
shows the dirty image generated from those 4 subsets. The right column shows the withheld subset of data
used for validating the model. Each of the K rows shows a different subset of data used as the testing data.
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5. RESULTS

We explored the effects of entropy, sparsity, TV, and TSV regularizers on the HD 143006 data.
Figure 4 shows the effect of each of these regularizers at different strengths (set with the λ prefactor
on each term). Figure 5 shows the residuals of each optimized image for each of the panels shown in
Figure 4. An image of HD 143006 made by combining multiple regularizing terms is shown in Figure
6, along with a comparison to the CLEAN image.

5.1. Maximum Entropy

Maximum entropy regularization promotes similarity to a set of reference pixels. Here, we use
a uniform set of reference pixels. In other words, we do not directly impose assumptions about
the morphology of HD 143006 on the optimization process. Maximum entropy is well-known for its
ability to achieve high-resolution images (Cornwell & Evans 1985; Narayan & Nityananda 1986). The
first column of Figure 4 shows the effect of different λ prefactors for maximum entropy regularization
of HD 143006. Even at high λ values, maximum entropy regularization can retain high-resolution
features in the image. However, promoting similarity to an image of uniform intensity means that at
excessive λ values, the image tends to a final image that appears “faded,” making emission appear
fainter across the entire source. The bottom-left panel of Figure 4 shows an example of such an
image.
One indication of an underfitting with maximum entropy is a final image that appears faint or

slightly blurred. Another way to check for underfitting is by examining the residual image. In the
bottom-left panel of Figure 5, ringed structure is evident in the residual image created by maxi-
mum entropy regularization with λ = 5. In some cases, these effects may be mitigated by using a
non-uniform set of reference pixels, such as a circular Gaussian (e.g. Event Horizon Telescope Col-
laboration et al. 2019) or a uniform ring. This should be done with caution, as maximum entropy
regularization will tend towards similarity with the reference image, and the reference image may not
capture enough characteristics of the true source. This could have unintended consequences such as
regularizing out small-scale structures or unexpected asymmetries that are present in the data but
not in the set of reference pixels.

5.2. Sparsity

Sparsity regularization promotes mostly blank images, with only the most impactful pixels remain-
ing in the final image. Only a λ prefactor determines how strongly sparsity should be imposed during
optimization. Column 2 of Figure 4 shows images of HD 143006 with 5 different sparsity λ values.
A small λ can effectively remove noisy background pixels in the image without changing much, if
anything, about the source emission.
Sparsity regularization alone does not introduce any sort of “smoothing” effects that may be de-

sirable for a resolved source; the final image will ultimately be a sparse collection of nonzero pixels,
which can make it difficult or impossible to identify small-scale structures within the image. In
the case of HD 143006, sparsity regulariztion is most effectively used in combination with other
regularizing terms.
An underfitted sparsity term can have a significant negative impact on the optimization process,

creating a final image that is not representative of the entire source. In the case of HD 143006, sparsity
regularization with a high λ value removed some of the more diffuse emission, and in extreme cases
removed some rings entirely. In Figure 4, the bottom panel of column 2 of shows the result of imaging
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Figure 4. The effect of individual regularizers on images of HD 143006. From left to right, each column
shows entropy, sparsity, total variation, and total squared variation regularizers at varying strengths. The
top row uses the least regularization (i.e. a small λ prefactor on the regularizing term) and the bottom
shows extremely high regularization. The optimal λ values can be found using CV methods.



18 Zawadzki et al.

0.5

0

-0.5

= 0.01
Entropy

= 1e-4
Sparsity

= 5e-6
TV

= 2e-5
TSV

0.5

0

-0.5

= 0.1 = 1e-3 = 1e-5 = 2e-4

0.5

0

-0.5

= 0.5 = 1e-2 = 5e-5 = 2e-3

0.5

0

-0.5

= 1.0 = 2e-2 = 5e-4 = 2e-2

0.5 0 -0.5

0.5

0

-0.5

= 5.0

0.5 0 -0.5

= 3e-2

0.5 0 -0.5

= 5e-3

0.5 0 -0.5

= 2e-1

cos  [ ]

 [
]

Figure 5. Residuals for the images presented in Figure 4. Regularizer strengths are lowest in the top
row, and highest in the bottom row. Images generated with strong regularizing terms show structure in the
residual images, indicating that the model is underfitting the data.
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Figure 6. Dirty image (left), tclean (center), and RML (right) images of HD 143006. The loss function for
the RML image included maximum entropy (λ = 0.5), sparsity (λ = 10−3), and TSV (λ = 2× 10−3) terms.
In this case, maximum entropy contributed high resolution features to the final image, sparsity removed
background noise, and TSV helped better define ring structure in the disk.

HD 143006 with a highly underfitted sparsity term. Here, the outer ring has been regularized away,
but the bright azimuthal asymmetry that normally coincides with the outer ring is still present,
completely misrepresenting the morphology of the source.
This sort of underfitting is very evident in the residual image (column 2, Figure 5). Because only

the most prominent features remain in the final sky brightness image, any diffuse or generally lower-
intensity emission will instead be apparent in the residuals. In the sky brightness image of a resolved
source, things to look out for that may indicate underfitting of the sparsity term include features
that appear ‘incomplete’ such as having partial rings, an unexpected bright standalone feature, or
unexpectedly sharp changes in intensity.

5.3. Total Variation

TV regularization promotes sharp edges between areas of different intensities, with smoothness in
areas of similar intensity. Column 3 of Figure 4 shows the effect of different λ prefactors for TV
regularization of HD 143006. Because TV promotes similarity between adjacent pixels unless there
is a large change in intensity, TV regularization can result in a final image composed of many nearly
uniform cells, each containing several pixels. This can create an optical illusion where the image
appears to have larger pixels than the true pixel size (e.g. see the third column and third row in
Figure 4, where λ=5e-5).
This effect changes as the λ value increases, with final images being reminiscent of a watercolor

painting or a photo that has been posterized. Because TV regularization does not favor gradual
changes in intensity, instead preferring sharp changes, a smooth change in source intensity is likely to
become a set of sharply defined layers in the final image. In the case of extreme overregularization,
this can remove most detail from the image, resulting in a final image that appears blotchy or smeared.
However, in sources with ringed emission like HD 143006, the smearing is mostly azimuthal rather
than radial, retaining the large scale ring structure of the source in the final image while losing or
minimizing finer details like gaps or azimuthal asymmetries.
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For these reasons, TV regularization may be a poor choice if the source is likely to have small scale
features or gradual changes in intensity, as many astronomical sources do. Tuning the λ prefactor
for TV regularization is finicky compared to other regularizers, as increasing λ can quickly take the
final image from essentially unregularized to the large pixel illusion to completely smeared emission.
Though underfitting can be evident due to the presence of structure in residual images (see the
bottom panel of column 3, Figure 5), it may not be evident until well after morphological details
have already been regularized out of the final image.

5.4. Total Squared Variation

Like TV regularization, TSV regularization promotes sharp edges between areas of different inten-
sities. However, the TSV regularizer is less rigid with this condition, allowing for larger differences
between adjacent pixels. This makes TSV a strong performer for sources with clearly defined but not
perfectly sharp features, such as ringed emission. The rightmost column of Figure 4 shows images of
HD 143006 with 5 different TSV λ values. Well-tuned TSV regularization performs comparably to
maximum entropy regularization, retaining high-resolution features in the final image.
The primary sign of underfitting with TSV is a blurred image. If the final sky brightness image

after regularizing with TSV appears to have no sharp features at all as if it had been put through
a low pass filter, it is likely overregularized. This is also evident in the residual images (rightmost
column, Figure 5), where sharp structures will appear if they have been regularized out of the sky
brightness image.

6. DISCUSSION

6.1. Subtleties of Cross-Validation

Cross-validation (CV) can be a useful tool for determining the optimal values of the regularization
parameters to maximize image fidelity. The use of CV methods on interferometric data is an active
area of research, and there are many aspects which have not yet been fully explored. First, there
are both exhaustive and non-exhaustive CV methods; exhaustive methods use all possible ways to
partition data, while non-exhaustive methods use only a subset of possible partitions. An example
of an exhaustive method is leave-one-out CV (LOOVC), which takes all but one data point as the
training set and uses the remaining data to test. These methods can be extremely computationally
expensive, especially in the case of interferometric data containing millions of visibilities. In addition,
LOOCV performs poorly compared to other methods of CV (Breiman & Spector 1992).
Non-exhaustive CV methods like K-fold CV greatly reduce the total computational burden, and

are thus a more practical CV method for interferometric data. K-fold CV requires a choice of K
that balances bias and variance, with a high K yielding a low bias, high variance estimation and a
low K yielding a high bias, low variance estimation (Hastie et al. 2009). Studies in statistics and
informatics have consistently found K = 10 to provide the best bias-variance trade-off (e.g. Breiman
& Spector 1992; Kohavi 1995; Molinaro et al. 2005). While no studies have specifically examined the
optimal K for K-fold CV of interferometric data, the standard K = 10 has been used with success
for such applications (Akiyama et al. 2017b,a; Yamaguchi et al. 2020).
Aside from the choice ofK, one must also decide how to partition the data set. Uniform partitioning,

which effectively examines how the model fits with new data in comparable u-v space, has been used
in previous studies of RML for interferometry (e.g. Akiyama et al. 2017b,a; Yamaguchi et al. 2020).
We explore dartboard partitioning (see Figure 3) to approximate how the model might fit with data
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Table 1. An example of how a lack of convergence during CV can yield a misleading final CV
score. Here, we compare CV scores for the same set of model parameters, changing only the
number of iterations used to train the model. After 1000 iterations, K-fold 3 has not converged,
yielding a χ2 value of 45.15 and greatly driving up the total CV score. After 3000 iterations,
the χ2 value of K-fold 3 is more in line with the other 9 K-folds. This is caused by the training
dataset for K-fold 3 not including the lowest spatial frequency visibility cells; only the testing
dataset contains these values. For this example we use a dartboard data partitioning scheme on
the HD 143006 data, and sparsity (λ = 10−3) and TSV (λ = 8 × 10−4) regularization with a
learning rate of 0.5.

Contribution to total CV score per K-fold

iterations time (s) CV score 1 2 3 4 5 6 7 8 9 10

1000 123.5 62.50 1.88 1.67 45.15 3.06 2.49 1.30 1.18 1.20 2.02 2.55

3000 370.5 14.19 1.31 1.27 1.99 1.68 1.50 1.17 1.15 1.16 1.42 1.55

obtained from a variety of array configurations. However, one need not be limited to these two
partitioning schemes, and future work may determine that another method of partitioning visibility
data for CV works better.
Regardless of the choice of K and data partitioning scheme, it is vital to ensure that the model

has fully converged for each training set. We find that the number of iterations needed to optimize
the model during K-fold CV is often greater than the number of iterations needed to optimize the
model with the full dataset, as training on fewer data points can require more iterations before the
loss function is minimized. This is especially true for the K-fold that does not contain the visibilities
at the lowest spatial frequencies (i.e. (u, v) close to zero), as the omission of this data can cause a
slow initial decline of the total loss. Because the final CV score is the sum of the χ2 for all K-folds,
a K-fold that has not fully converged can result in a spuriously high CV score. We recommend
inspecting each K-fold for convergence, as well as inspecting the final χ2 value for each K-fold. An
unusually high χ2 value for a single K-fold compared to the other K − 1 K-folds can indicate a lack
of convergence (see Table 1 for an example). This usually coincides with the K-fold for which the
training set lacks data at the lowest spatial frequencies. If each K-fold does not reach convergence,
the final CV score is invalid and the entire CV process must be repeated with enough iterations to
ensure full convergence.

While CV scores can be used to find optimal regularization parameters, care should be taken
when comparing CV scores. First, as mentioned above, any CV score obtained from an incomplete
optimization loop (i.e. one or more K-folds do not reach convergence) cannot be used. CV scores
may only be compared across the same dataset, model specification, and CV setup. The CV setup
includes the value of K and the choice and implementation of partitioning scheme. For example, a
CV workflow could be set up with K = 5 and dartboard partitioning with 12 radial bins and 16
azimuthal bins, as shown in Figure 3.
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It is possible to compare CV scores when using different regularizers, as long as the regularizer has
a tuneable prefactor (e.g. λ values) that can be set to zero. For example, one could compare the CV
score for a model with only an entropy regularizer to that of a model with only a TV regularizer,
because this is effectively comparing different ways to tune the λ prefactors, including λentropy = 0
and λTV = 0. In addition to these edge cases which “turn off” certain regularizers, CV scores can be
compared for any values of λentropy and λTV, as long as the dataset and CV setup remain consistent.

6.2. Determining Image Resolution with RML

Imaging with CLEAN typically involves building up a model of CLEAN components and then
convolving that model with the CLEAN beam. A CLEAN component may be as simple as a Dirac
δ-function, which is useful for identifying a location of peak flux but likely to be a poor representation
of the spatially resolved source. Beam convolution effectively spreads these components over the size
of the beam, making the image more representative of the true source morphology at the cost of
resolution. Because the size of the CLEAN beam is a known quantity, characterizing the resolution
of the final image is relatively straightforward.
RML images, on the other hand, are not generated from a set of simplistic components and thus do

not inherently require beam convolution as part of the imaging process. The most obvious benefit to
this is that loss of resolution is not injected into the imaging workflow. However, the lack of restoring
beam does make characterizing the final image resolution a bit more ambiguous. Chael et al. (2016)
find that restoring beams can still be useful for RML methods, as false high-frequency features can
sometimes be injected into the image. While a restoring beam can fix this issue, using too large of a
beam could remove real features in the image.
The optimal restoring beam size can be computed given knowledge of the true source; as in Chael

et al. (2016), the beam size that minimizes the NRMSE (Equation 2) can be used to maintain the
highest degree of superresolution without retaining the spurious high-frequency features. Given that
we usually lack the true image, this approach will not always be possible. Even though the optimal
restoring beam size cannot always be constrained, image fidelity is only mildly worsened by selecting
a beam size smaller than the optimal value. As a result, the use of a restoring beam in an RML
imaging workflow can only result in modest fidelity gains in the best case, and can result in significant
loss of resolution in the worst case.

7. CONCLUSION

We have developed a GPU-accelerated RML imaging workflow designed for ALMA measurement
sets. The RML workflow enables imaging with better resolution and image fidelity than image-plane
deconvolution algorithms like CLEAN. We explored how maximum entropy, sparsity, TV, and TSV
regularizing terms can be incorporated into the imaging process, and how each of these regularizers
affects the final RML image. We also described how to use K-fold CV to validate the image and
determine the best regularization parameters for image fidelity and resolution.
The MPoL software used in this study is open source and designed with ALMA measurement sets

in mind. Anyone wishing to use MPoL for RML imaging of ALMA data should follow these general
steps.

1. Obtain arrays of complex visibility data. MPoL is designed to work directly with arrays
of complex visibilities in order to avoid potential issues with installation and version control
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of CASA and related tools. Visibilities can be obtained from CASA measurement sets using
CASA tools. There are also open source software packages like visread8 that can aid in this
process.

2. Select pixel size and number of pixels in the image. These pixels will serve as the model
parameterization, and allow loose visibilities to be gridded. It is important to be mindful of
the choice of pixel size, as pixels that are too large will place an intrinsic resolution limit on
the final image, and using too many small pixels will introduce an unnecessary computational
burden on the imaging process. At this point, it is also a good idea to examine the dirty image
in MPoL to make sure that everything has been loaded and initialized as expected.

3. Set the initial state of the model and determine which regularizers to include in
the loss function. We recommend initializing the model with the dirty image. Dirty image
initialization leads to faster convergence of the loss function. The loss function may include
any number of regularizing terms.

4. Define a range of hyperparameter values to be tested with CV. We recommend
beginning with a coarse grid of values. The hyperparameter values that yield the highest fidelity
images can change with the dataset, so starting with a wide range of values (i.e. spanning
several orders of magnitude) helps quickly hone in on a narrower range of potential values. For
example, while one dataset might minimize the CV scores with an entropy prior with λ = 0.1,
another dataset might minimize the CV score with λ = 10, so a coarse round of CV might test
λ = [0.01, 0.1, 1, 10].

5. Set up CV process by defining the number of K-folds and data partitioning scheme.
We recommend using K = 10, which has been shown to balance bias and variance in the
estimation and has already been used with success in interferometric imaging.

6. Perform CV (perhaps in a coarsely-defined round and a fine-tuning round) to
obtain optimal imaging hyperparameters. The set of hyperparameters that minimizes
the CV score correspond to the model with the best predictive performance. Ensure that each
K-fold has reached convergence during the CV process; if each K-fold did not fully converge, the
CV score is invalid and CV must be restarted with enough iterations to allow full convergence.

7. Image using the full dataset with the hyperparameters that minimized the CV
score. Ensure that the model has fully converged. If it has, the result is a fully regularized
image.

While this is a rough outline of a functional RML workflow, in practice the RML imaging process
need not be so linear. For some imaging cases, one may find it beneficial to try individual regularizers
before combining them, or to produce some preliminary images before running the full CV process.
When selecting regularizers, we recommend considering the qualitative features the source is likely
to have. Maximum entropy and sparsity regularization tend to produce high-resolution features, and
sparsity has the added benefit of effectively removing background noise. TV and TSV regularizers

8 https://mpol-dev.github.io/visread/
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tend to emphasize sharp edges in the image, with TV enforcing sharp edges more rigidly. These
general characteristics can help inform which regularizers to include in the loss function.
Overall, RML techniques provide flexible imaging processes that are well-suited for applications

to ALMA measurement sets, particularly observations of protoplanetary disks. Future work will
explore regularization on a wider range of source morphologies observed by ALMA, including image
cubes with many velocity channels. We will also probe additional types of regularization, such as
regularization across velocity channels for spectral line data, or regularization on quantities derived
from data such as power spectrum regularization.
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Högbom, J. A. 1974, A&AS, 15, 417
Honma, M., Akiyama, K., Uemura, M., & Ikeda,
S. 2014, PASJ, 66, 95, doi: 10.1093/pasj/psu070

Huang, J., Andrews, S. M., Dullemond, C. P.,
et al. 2018, ApJL, 869, L42,
doi: 10.3847/2041-8213/aaf740

Kohavi, R. 1995, in
Kuramochi, K., Akiyama, K., Ikeda, S., et al.
2018, ApJ, 858, 56,
doi: 10.3847/1538-4357/aab6b5

Li, F., Cornwell, T. J., & de Hoog, F. 2011, A&A,
528, A31, doi: 10.1051/0004-6361/201015045

McMullin, J. P., Waters, B., Schiebel, D., Young,
W., & Golap, K. 2007, in Astronomical Society
of the Pacific Conference Series, Vol. 376,
Astronomical Data Analysis Software and
Systems XVI, ed. R. A. Shaw, F. Hill, & D. J.
Bell, 127

Molinaro, A. M., Simon, R., & Pfeiffer, R. M.
2005, Bioinformatics, 21, 3301,
doi: 10.1093/bioinformatics/bti499

http://doi.org/10.3847/1538-3881/aa6302
http://doi.org/10.3847/1538-4357/aa6305
http://doi.org/10.1088/2041-8205/808/1/L3
http://doi.org/10.3847/2041-8205/820/2/L40
http://doi.org/10.3847/2041-8213/aaf741
https://www.springer.com/gb/book/9780387310732
https://www.springer.com/gb/book/9780387310732
http://www.jstor.org/stable/1403680
http://doi.org/10.1016/j.ascom.2017.11.003
http://doi.org/10.1111/j.1365-2966.2012.21605.x
http://doi.org/10.1093/mnras/stu202
http://doi.org/10.3847/1538-4357/aab6a8
http://doi.org/10.3847/0004-637X/829/1/11
https://www.cambridge.org/us/academic/subjects/computer-science/pattern-recognition-and-machine-learning/mathematics-machine-learning
https://www.cambridge.org/us/academic/subjects/computer-science/pattern-recognition-and-machine-learning/mathematics-machine-learning
https://www.cambridge.org/us/academic/subjects/computer-science/pattern-recognition-and-machine-learning/mathematics-machine-learning
https://www.cambridge.org/us/academic/subjects/computer-science/pattern-recognition-and-machine-learning/mathematics-machine-learning
http://doi.org/10.3847/2041-8213/ab0e85
http://doi.org/10.1007/978-0-387-84858-7
http://doi.org/10.1093/pasj/psu070
http://doi.org/10.3847/2041-8213/aaf740
http://doi.org/10.3847/1538-4357/aab6b5
http://doi.org/10.1051/0004-6361/201015045
http://doi.org/10.1093/bioinformatics/bti499


RML for ALMA 25

Murphy, K. P. 2012, Machine Learning: A
Probabilistic Perspective (The MIT Press).
https:
//mitpress.mit.edu/books/machine-learning-1

Narayan, R., & Nityananda, R. 1986, ARA&A, 24,
127, doi: 10.1146/annurev.aa.24.090186.001015

Paszke, A., Gross, S., Massa, F., et al. 2019, in
Advances in Neural Information Processing
Systems 32, ed. H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, &
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