
Draft version January 31, 2022
Typeset using LATEX default style in AASTeX631

Radio-astro-tools

Eric Koch, Adam Ginsburg, Tom Robitaille, Erik Rosolowsky

ABSTRACT

We present the radio-astro-tools code suite, which consists of several Python packages that enable

analysis of radio data, especially interferometric spectral cubes, in the context of the Astropy software

ecosystem. While these tools were designed with radio data in mind, they are built to be general,

and have applications on data sets at other wavelengths. The core package, spectral-cube, handles

reading and writing and analysis of cube data, and it enables straightforward parallelization via dask

and joblib backends. Support packages include casa-formats-io and radio-beam, which handle

reading of CASA tables & images and reading and manipulation of point spread functions, respec-

tively. The pvextractor package facilitates creation of position-velocity diagrams. The uvcombine

package implements the ‘feather’ algorithm for combining single-dish and interferometric data. The

development of radio-astro-tools included several contributions to other repositories, including

matplotlib, astropy, and astropy-regions to support interaction between CASA and other parts

of the astronomy software ecosystem.

1. INTRODUCTION

Astronomers often self-identify with a specific wavelength, but multiwavelength astronomy has become commonplace,

especially in the era of queue observing in which specialization in observing in a given wavelength regime is not needed

to obtain data. Space telescopes and radio interferometers have been operating in the mode of delivering nearly-

final data products to astronomers for a long time. The delivery of data from different wavelengths with different

instruments but common assumptions about locations on the sky and energy of the photons drove the development of

standardized world coordinate systems (Greisen et al. 2006; Calabretta & Greisen 2002).

1.1. Relationship to CASA

CASA (McMullin et al. 2007) is the core package for radio astronomy data reduction and analysis, having supplanted

AIPS in the early 2000’s for VLA data and always being the main tool for ALMA. In addition to the interferometric

data processing features uniquely available in CASA, it contains many tools for cube and image analysis.

2. THE PACKAGES

radio-astro-tools is comprised of several python packages: the main spectral-cube package and several light-weight

packages that support specific operations or visualization for radio data. In this section, we describe the purpose and

capabilities of each package. We provide a guide for translating between operations in CASA and radio-astro-tools:

https://github.com/radio-astro-tools/tutorials/tree/master/casa to spectralcube guide.

2.1. spectral-cube

spectral-cube is the primary radio-astro-tools package that enables fast and flexible I/O operations with most

common analysis methods backed by the astropy ecosystem. Additionally, a primary goal of spectral-cube is

seamless handling of larger-than-memory spectral data cubes.

Users primarily interact with the ‘SpectralCube‘ class, which handles reading different data formats and types of

spectral cubes. For example, spectral-cube handles data cubes with a varying spectral resolution (i.e., the beam

varies between each spectral channel) as is expected for wide-bandwidth coverage and spectral scan data. Basic

handling for 4D cubes with a polarization axis is available in the current version with additional capabilities planned.

Finally, we highlight that spectral-cube has a thorough testing suite to check all operations in the package. Users

can access further information and documentation at https://spectral-cube.readthedocs.io.

We present an overview for how to integrate spectral-cube into new packages (§3), present tutorials with worked

examples (§4), and describe further uses of spectral-cube with the accompanying packages described below (§5).

https://github.com/radio-astro-tools/tutorials/tree/master/casa_to_spectralcube_guide
https://spectral-cube.readthedocs.io


2

spectral-cube provides easy handling for common operations and analyses of spectral data cubes. This includes:

• Basic arithmetic between cubes with matching WCS coordinates.

• Signal and noise masking. The masking framework is flexible and includes new mask creation, mask combination,

and passing/combining with pre-made masks. Operations such as sigma-masking can also be used.

• Spatial and spectral region extraction using pixel indices, WCS coordinates, and DS9/CRTF defined regions.

• Moment map calculation (zeroth, first, second, Nth moments) and other common projection methods including

the maximum, minimum, and spectral value at max/min brightness (e.g., velocity at peak temperature).

• Spectra and projection visualization.

• Spatial convolution to a set Gaussian beam size (using radio-beam; §2.2), median smoothing and smoothing to

an arbitrary kernel type using astropy.convolution.

• Spectral smoothing with astropy.convolution kernels and resampling to a new spectral axis.

• Spatial and spectral reprojection to a given FITS header using the reproject package.

• Integration with visualization packages including glue1 (Robitaille et al. 2017), yt2 (Turk et al. 2011) and DS93

(Smithsonian Astrophysical Observatory 2000), with future plans to integrate with CARTA4 (Comrie et al. 2021).

These operations are implemented to avoid reading in the entire data cube and compute in chunks when handling large

data cubes. For operations where this is not easily done, users are warned of operations that could exceed memory

limits and given the option to disable this behavior.

2.2. radio-beam

Interferometric data is generally imaged using a variant of the CLEAN algorithm, which produces final images con-

sisting of a model convolved with a synthesized point spread function, generally called the ‘clean beam’ or ‘synthesized

beam’. radio-beam5 is a toolkit for working with standard Gaussian clean beams. It can read and write both single

beams and per-channel beams for cubes, and includes operations for convolution, deconvolution and unit conversions

(e.g., Jy/beam to K). It also includes a general algorithm for determining the smallest common beam for convolution

of a data cube to a common resolution by solving for the minimum enclosing ellipse given a set of ellipses. Appendix

A provides further details on the algorithm.

radio-beam also contains a helper function for adding the beam shape on to matplotlib figures (see Figure 1).

2.3. pvextractor

Position-velocity diagrams are two-dimensional slices through three-dimensional data cubes, where the third dimen-

sion is spectral and can generally be interpreted, for a given observed emission or absorption line, as doppler-shifted

velocity of gas. The pvextractor package6 allows users to produce slices along arbitrary paths. It also allows averaging

perpendicular to the selected paths. Slice paths can be specified in pixel or world coordinates and can be produced

either programmatically or through the PVSlicer GUI. pvextractor is incorporated into the glueviz7 package.

2.4. uvcombine

Interferometric observations do not fully sample the Fourier plane of the sky; they intrinsically leave a gap at

the center of the domain, which referred to as ‘short spacing’ or the ‘DC component’. To fill in the missing short

spacings, different observations that are taken with a single filled-aperture telescope (‘single-dish’) can be combined

with interferometric images. CASA provides a tool for the Fourier-space combination of interferometric and single-dish

1 https://glueviz.org/
2 https://yt-project.org/
3 https://ds9.si.edu
4 https://cartavis.org/
5 https://github.com/radio-astro-tools/radio-beam, https://radio-beam.readthedocs.io
6 https://github.com/radio-astro-tools/pvextractor/, https://pvextractor.readthedocs.io
7 https://glueviz.org/

https://glueviz.org/
https://yt-project.org/
https://ds9.si.edu
https://cartavis.org/
https://github.com/radio-astro-tools/radio-beam
https://radio-beam.readthedocs.io
https://github.com/radio-astro-tools/pvextractor/
https://pvextractor.readthedocs.io


3

Figure 1. Example of plotting a beam with radio-beam

images in the feather task. The uvcombine8 package provides a python-based implementation of the same algorithm.

It includes a few additional configurable options and is more flexible about the input data type and the units of the

input data.

uvcombine also includes tools to estimate the flux scaling factors between the single-dish and interferometric data,

as described in Stanimirovic (2002) and Koch et al. (2018, see Appendix A). These tools compare the relative flux

at scales that both the data sets are sensitive to, which is necessary to test whether the flux calibrations applied are

consistent or whether a correction factor should be applied (more often to the single dish data).

As of February 2022, while uvcombine has been confirmed to run successfully and has been tested

against CASA feather for one case, it is not yet recommended to use without further tests for correct-

ness.

2.5. casa-formats-io

CASA natively writes data into directories that contain tabular data. The CASA format has historically only been

readable by casacore9 (Casacore Team 2019), which is a library written in C with bindings available in several other

languages. casacore does many things besides file reading, though, and can be challenging to install10.

casa-formats-io11 is a table reader for CASA data formats written in python and c (though all user-facing functions

are in python). It is cross-platform, operating on unix, windows, and mac operating systems. It uses dask to lazily

load the data following CASA’s chunking scheme. CASA tables are presented to the user as astropy tables or as dask

arrays depending on the function used.

2.6. statcont

The statcont package was developed to enable continuum estimation from complex “line-forest” data sets (Sánchez-

Monge et al. 2018). The original package used only astropy.io.fits and required loading the entire data set into

memory. We have added a capability to use statcont with spectral-cube, which enables running statcont on cubes

8 https://uvcombine.readthedocs.io/en/latest/
9 https://casacore.github.io/casacore/
10 https://newton.cx/∼peter/howto/access-casa-in-python-without-casapy/
11 https://casa-formats-io.readthedocs.io, https://github.com/radio-astro-tools/casa-formats-io

https://uvcombine.readthedocs.io/en/latest/
https://casacore.github.io/casacore/
https://newton.cx/~peter/howto/access-casa-in-python-without-casapy/
https://casa-formats-io.readthedocs.io
https://github.com/radio-astro-tools/casa-formats-io


4

Figure 2. Static images of interactive region drawing with matplotlib and regions. Left: Square region on a blank canvas
(Interactive Version). Right: Square region projected onto an image (Interactive Version). Examples from Derek Homeier and
David Stansby.

that are larger than the computer’s memory. As part of this process, significant performance enhancements were made

to astropy.stats.sigma clip12.

2.7. astropy regions

The astropy/regions package13 is not part of the radio-astro-tools grouping, but it includes several tools for

interaction with CASA. The CRTF file format (CASA Region Text Format) is used internally by CASA to specify

regions of interest, analogous to the popular ds9 regions, but with some support for selection in more than two

dimensions. regions implements a reader and writer for the CRTF format, enabling conversion between formats.

One of the motivations to use regions of interest in CASA is to specify “clean boxes” during an interactive image

deconvolution run. To support creation of such clean boxes in graphical interfaces, regions can be displayed and

modified within matplotlib plot windows14. Several additional features for manipulating elliptical, rectangular, and

polgyon shapes were added to matplotlib as part of the development work to support this feature.

3. USING RADIO-ASTRO-TOOLS FOR DEVELOPMENT OF OTHER PACKAGES

The radio-astro-tools packages are ideally suited to handle I/O operations in other python packages. This is a

significant strength given the efficient larger-than-memory data handling in spectral-cube and parallelization of

operations with the dask integration that users can build upon. We include an example use case in our set of tutorials

demonstrating how spectral-cube and dask can parallelize fitting a Gaussian model to every spectrum in an ALMA

data cube, loading only small chunks into memory at a time (§4). This example overcomes an often-faced issue for

some spectral cube modeling tools, which converted standard cube file formats (FITS, CASA image) to non-standard

forms (pickle or text file) to boost performance. spectral-cube removes the need for these extra conversion and I/O

steps.

Included in the spectral-cube documentation15 is documentation for recommended practices for developers.

12 https://docs.astropy.org/en/stable/changelog.html#id46
13 https://astropy-regions.readthedocs.io/en/stable/, https://github.com/astropy/regions
14 TODO: link to docs
15 https://spectral-cube.readthedocs.io/en/latest/developing with spectralcube.html

https://user-images.githubusercontent.com/6197628/148653577-57ef2750-09dc-4a13-bcd7-f2c23a58e3b7.gif
https://user-images.githubusercontent.com/314716/82560196-dd4df800-9b68-11ea-8ff3-08dc2fc4ac14.gif
https://docs.astropy.org/en/stable/changelog.html##id46
https://astropy-regions.readthedocs.io/en/stable/
https://github.com/astropy/regions
https://spectral-cube.readthedocs.io/en/latest/developing_with_spectralcube.html


5

Re-chunk for spectral operations

Re-chunk for spatial operations

Re-chunk with custom shape

Figure 3. Examples of rechunking a data cube to optimize for spectral and spatial operations (top, middle), and passing a
custom chunk shape (bottom) using the dask integration in spectral-cube.

We note that radio-astro-tools is already used in a number of calibration, imaging and analysis pipelines. Examples

include ALMA (e.g., ALMA-IMF16; PHANGS17; Ginsburg et al. 2021; Leroy et al. 2021), GBT (GAS18; DEGAS19

Friesen et al. 2017, , Kepley et al. in prep.), and ASKAP (e.g., GASKAP; Pingel et al. 2021) large programs, as well

as the calibration pipeline for Aptertif (Apercal; Adebahr et al. 2022).

3.1. glue

The glue visualization and analysis toolkit uses many components of the radio-astro-tools package both for

reading files and for analysis. The position-velocity extraction in glue directly uses pvextractor. We have also

demonstrated that casa tables can be loaded into glue, enabling direct analysis of measurement sets.

4. TUTORIALS

16 https://github.com/ALMA-IMF/reduction
17 https://github.com/akleroy/phangs imaging scripts
18 https://github.com/GBTAmmoniaSurvey/GAS
19 https://github.com/GBTSpectroscopy/degas

https://github.com/ALMA-IMF/reduction
https://github.com/akleroy/phangs_imaging_scripts
https://github.com/GBTAmmoniaSurvey/GAS
https://github.com/GBTSpectroscopy/degas


6

We have written a series of tutorials with fully worked analyses for common operations of spectral-line data cubes.

The tutorials are written as jupyter notebooks and can be accessed and ran interactively in a web browser using

binder20. At least two tutorials of these tutorials are incorporate into the astropy learn project21 (two as of Feb.

2022). These tutorials are written at a suitable level for senior undergraduate or graduate students, or astronomers

seeking to become more familiar with analyzing radio astronomy data.

The following completed tutorials include:

1. Reprojecting two spectral-cube to a common grid and resolution. astropy-learn https://github.com/astropy/

astropy-tutorials/pull/504

2. Position-velocity diagram extraction and plotting. astropy-learn https://github.com/astropy/astropy-tutorials/

pull/503. Figure 4 comes from this tutorial.

3. A user’s guide to common operations in CASA and spectral-cube. radio-astro-tools. https://github.com/

radio-astro-tools/tutorials/tree/master/casa to spectralcube guide

4. Spatial and spectral fitting with spectral-cube and astropy.modeling. radio-astro-tools. https://github.

com/radio-astro-tools/tutorials/tree/master/spectral fitting.

5. Signal masking and moment map creation for spectral-line cubes. radio-astro-tools. https://github.com/

radio-astro-tools/tutorials/tree/master/masking and moments.

Additional tutorials are in preparation, including

1. Position-velocity extraction using matplotlib interactive region drawing and manipulation

2. Reprojection to match two spectral cubes, using one to signal mask the other. radio-astro-toolshttps://

github.com/radio-astro-tools/tutorials/pull/18.

3. Proof of concept for parallelizing fitting a spectral model to an entire cube using spectral-cube, dask, and

astropy.modeling. radio-astro-tools. https://github.com/radio-astro-tools/tutorials/pull/12.

5. THE INTEGRATED ECOSYSTEM FOR RADIO ASTRONOMY

A key aim of the radio-astro-tools project is to integrate the radio astronomy analysis tools with the rest of the

astronomical python ecosystem. This aim is achieved by supplying the tools for reading, manipulating, and writing

astronomical images, cubes, spectra, and regions of interest from a wide variety of data sources.

5.1. Reprojecting images with reproject

Pixel-by-pixel comparison of data from different observations with varying pixel scales is often needed. The re-

projection22 tutorial shows how to smooth and re-grid two ALMA cubes onto a common spatial and spectral grid.

All aspects of the smoothing and regridding, both spatial and spectral, can be handled within spectral-cube using

astropy.units for unit handling, astropy.convolution for convolution, and reproject23 for re-gridding onto new

world coordinate systems.

5.2. Regions-of-interest with regions and interactive matplotlib tools

Selecting portions of the sky, or simply drawing on the sky, is an integral component of data analysis and publication

figures. There are several region file formats and editors of varying popularity, particularly the SAOImage ds9 visu-

alization tool (Smithsonian Astrophysical Observatory 2000), which defines a .reg format, and the CASA Viewer24

and CARTA visualization tools (Comrie et al. 2021), which primarily use the CRTF region format25. The IVOA has

also defined a more general region specification format, though we are not aware of any code implemented to use it.

20 mybinder.org
21 learn.astropy.org
22 https://github.com/radio-astro-tools/tutorials/blob/master/SpectralCubeReprojectExample.ipynb
23 https://reproject.readthedocs.io/
24 https://casa.nrao.edu/casadocs/casa-5.4.1/image-cube-visualization/viewer-basics
25 https://casadocs.readthedocs.io/en/stable/notebooks/image analysis.html, https://casaguides.nrao.edu/index.php/CASA Region Format

https://github.com/astropy/astropy-tutorials/pull/504
https://github.com/astropy/astropy-tutorials/pull/504
https://github.com/astropy/astropy-tutorials/pull/503
https://github.com/astropy/astropy-tutorials/pull/503
https://github.com/radio-astro-tools/tutorials/tree/master/casa_to_spectralcube_guide
https://github.com/radio-astro-tools/tutorials/tree/master/casa_to_spectralcube_guide
https://github.com/radio-astro-tools/tutorials/tree/master/spectral_fitting
https://github.com/radio-astro-tools/tutorials/tree/master/spectral_fitting
https://github.com/radio-astro-tools/tutorials/tree/master/masking_and_moments
https://github.com/radio-astro-tools/tutorials/tree/master/masking_and_moments
https://github.com/radio-astro-tools/tutorials/pull/18
https://github.com/radio-astro-tools/tutorials/pull/18
https://github.com/radio-astro-tools/tutorials/pull/12
mybinder.org
learn.astropy.org
https://github.com/radio-astro-tools/tutorials/blob/master/SpectralCubeReprojectExample.ipynb
https://reproject.readthedocs.io/
https://casa.nrao.edu/casadocs/casa-5.4.1/image-cube-visualization/viewer-basics
https://casadocs.readthedocs.io/en/stable/notebooks/image_analysis.html
https://casaguides.nrao.edu/index.php/CASA_Region_Format


7

Figure 4. Example position-velocity diagram (right) and trace (left) produced in Tutorial https://github.com/astropy/
astropy-tutorials/pull/504. The red rectangles shown in the left figure are extracted from the data cube and spatially av-
eraged. The average spectrum is shown in intensity as a vertical slice in each column of the right panel.

The astropy regions package26 implements a unified interface to CRTF and ds9 regions. It is able to read and write

both formats.

Spectral-cube can use regions to mask out spatial subsets. The region-based masking enables, e.g., averaging spectra

over a source of interest and creating position-velocity diagrams across irregular shapes. The latter is demonstrated

in the disk position-velocity diagram tutorial27.

Regions can be used in interactive cleaning to specify where model components should be added or disallowed.

The CASA viewer has been used for interactive cleaning. At present, no alternatives exist, though there are some

experimental implementations using matplotlib to select regions in a cube28. New additions to matplotlib allow creation

and editing of region files interactively with the matplotlib viewer, which is agnostic of backend - i.e., it can be used

on any matplotlib-compatible interactive viewer, including notebook viewers. The regions created in the interactive

viewer can be saved in world coordinates when astropy’s wcscaxes is used to display the regions.

5.3. All CASA-produced images are spectral cubes

CASA writes all of its outputs (its .image, .residual, etc.) files as 4-dimensional cubes. The first two dimensions

represent sky coordinates, the third spectral coordinates, and the fourth the Stokes axis. For many images, i.e.,

continuum images or single-polarization Stokes I cubes, there are one or more ‘degenerate’ axes, i.e., axes with length

1. CASA explicitly acknowledges this by including the dropdeg keyword in the exportfits function, which will

output a FITS file with no header information for the axes with length 1. However, for any data files not exported in

this way, or any native CASA files, the underyling object is still 4-dimensional. That means that these objects can be

opened directly with spectral cube, even if they are just 2-dimensional images.

6. SUMMARY

The radio-astro-tools project provides a broad range of tools for spectral cube analysis. It integrates with the

broader astropy ecosystem, enabling analysis of multiwavelength data in a common framework.

26 https://github.com/astropy/regions/
27 https://github.com/radio-astro-tools/tutorials/pull/20
28 https://github.com/urvashirau/Interactive-Imaging-with-CASA6

https://github.com/astropy/astropy-tutorials/pull/504
https://github.com/astropy/astropy-tutorials/pull/504
https://github.com/astropy/regions/
https://github.com/radio-astro-tools/tutorials/pull/20
https://github.com/urvashirau/Interactive-Imaging-with-CASA6


8

Development on the project is ongoing. Future development plans include additional integration into the still-under-

development CASA Next Generation Infrastructure (CNGI)29 framework. Additional tests for correctness will be

added into the uvcombine repository. Tools for correction of the JvM effect (Jorsater & van Moorsel 1995) will be

integrated into the general use tools. The astropy.regions interactive editing tools will be incorporated into the

glue visualization and analysis package.

APPENDIX

A. APPROXIMATIONS IN SOLVING FOR THE COMMON BEAM IN RADIO-BEAM

A common operation for radio data is to convolve to a common resolution, either internal to the data (e.g., between

spectral channels) or between different data sets. radio-beam includes two algorithms to solve for the minimum-

enclosing common beam: (i) an exact solution for sets of two beams following the implementation in casacore, and

an approximation for more than two beams based on the Khachiyan algorithm (Khachiyan & Todd 1993). Here we

describe our implementation and the approximations made to enable fast computation for large (> 1000) sets of beams.

Further information is given in the documentation30.

Finding the common beam is equivalent to solving for the minimum enclosing ellipse given a set of ellipses. The

formal Nd ellipsoid solution to this problem requires convex optimization as the solution lies at the edge of the valid

parameter space (“minimally” enclosing Boyd et al. 2004, ; Section31 8.4). Our problem for the common beam is

simplified in that it is only in 2D, all ellipses are centered at the origin, and we require only loose convergence to

much less than pixel size since most data sample ∼ 3 − 7 pixels per full-width-half-max (FWHM). We found that the

Khachiyan algorithm (Khachiyan & Todd 1993; Todd & Yıldırım 2007) was well-suited given these simplifications.

The Khachiyan algorithm samples points along the edge of each ellipse in the set. From these points, we compute

the convex hull of the set to define the boundaries and use those boundary points to solve for the minimum enclosing

ellipse.

radio-beam checks that all beams in the set can be deconvolved by the common beam solution. However, the

algorithm can converge within the allowed tolerance to marginally smaller than the true enclosing ellipse. To avoid

these cases where a beam cannot be marginally deconvolved, we increase the boundaries used by the Khachiyan

algorithm by a relative fraction 1 + ε (ε = 0.001 by default). ε is allowed to incrementally increase to a set maximum

(default of 0.01) to ensure convergence to a common beam that can deconvolved from each beam in the set. While

the addition of ε increases the common beam area, the default limits ensure that the increase should be far smaller

than the typical pixel size and therefore negligible.

The time to compute the common beam with our implementation, including consistency checks, is far shorter than

most cube operations. With a set of 1178 beams, the computation takes 0.7 s with the default parameters. We note

that performance will decrease when reducing the allowed tolerance; the number of iterations linearly increases with

the inverse of the threshold value.

A.1. Beam Convolution and Deconvolution

A poorly-resolved source will result in a Gaussian slightly larger than the beam. If observed at

high signal-to-noise, the source size can still be inferred by deconvolving the beam shape from the

observed source shape. This feature is implemented in radio beam as Beam.deconvolve; for exam-

ple, for an observed source with fitted size MeasuredSourceSize, the deconvolved source size would be

MeasuredSourceSize.deconvolve(observational beam).

B. FEATHERING COMPARISON BETWEEN UVCOMBINE AND CASA

We demonstrate that uvcombine and CASA’s feather task produce equivalent combined maps by generating an

image with a known power law and simulating a single-dish and interferometer response. The top left panel in Figure

5 shows the original image with a power law index of −3. We produce simulate a single-dish observation by convolving

the data to a beam size of 15′′ (using a Gaussian kernel). For the interferometer response, we assume an idealized case

29 https://cngi-prototype.readthedocs.io
30 https://radio-beam.readthedocs.io/en/latest/commonbeam.html
31 http://web.stanford.edu/∼boyd/cvxbook/

https://cngi-prototype.readthedocs.io
https://radio-beam.readthedocs.io/en/latest/commonbeam.html
http://web.stanford.edu/~boyd/cvxbook/


9

0 200 400
0

100

200

300

400

500
Original

0.2

0.4

0.6

0.8

1.0

1e 9

0 200 400
0

100

200

300

400

500
CASA feather

0.0

0.2

0.4

0.6

0.8

1.0

1e 9

0 200 400
0

100

200

300

400

500
uvcombine feather

0.2

0.4

0.6

0.8

1.0

1e 9

0 200 400
0

100

200

300

400

500
(uvcombine - CASA) / Original

0.10

0.05

0.00

0.05

0.10

Figure 5. Demonstration of equivalent feathered maps using uvcombine and CASA on a generated power law data. Only small
deviations remain between the feathered maps relative to the original image.

of a filled uv-plane between scales of 2–40′′, or equivalently a low- and high-pass top-hat filter. We use the same inputs

when feathering: a scale factor of 1.0 and no low pass filtering of the single-dish data on small scales. The feathered

data, shown in the top right and bottom left in Figure 5, are visually identical. The bottom right panel shows the

difference between the feathered data, normalized by the original image. The feather maps are consistent where the

simulated emission is brightest, and small deviations persist only for the faintest features. We find that the power law

indices of the feathered maps are consistent within < 1σ uncertainty.

The continuous integration testing for uvcombine includes tests comparing to the output from CASA’s feather task

on simulated power law, similar to this example.

REFERENCES

Adebahr, B., Schulz, R., Dijkema, T. J., et al. 2022,

Astronomy and Computing, 38, 100514,

doi: 10.1016/j.ascom.2021.100514

Boyd, S., Boyd, S. P., & Vandenberghe, L. 2004, Convex

optimization (Cambridge university press)

Calabretta, M. R., & Greisen, E. W. 2002, A&A, 395, 1077,

doi: 10.1051/0004-6361:20021327

Casacore Team. 2019, casacore: Suite of C++ libraries for

radio astronomy data processing.

http://ascl.net/1912.002

Comrie, A., Wang, K.-S., Hsu, S.-C., et al. 2021, CARTA:

The Cube Analysis and Rendering Tool for Astronomy,

2.0.0, Zenodo, doi: 10.5281/zenodo.3377984

http://doi.org/10.1016/j.ascom.2021.100514
http://doi.org/10.1051/0004-6361:20021327
http://ascl.net/1912.002
http://doi.org/10.5281/zenodo.3377984


10

Friesen, R. K., Pineda, J. E., co-PIs, et al. 2017, ApJ, 843,

63, doi: 10.3847/1538-4357/aa6d58

Ginsburg, A., Csengeri, T., Galván-Madrid, R., et al. 2021,

arXiv e-prints, arXiv:2112.08183.

https://arxiv.org/abs/2112.08183

Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen,

S. L. 2006, A&A, 446, 747,

doi: 10.1051/0004-6361:20053818

Jorsater, S., & van Moorsel, G. A. 1995, AJ, 110, 2037,

doi: 10.1086/117668

Khachiyan, L., & Todd, M. 1993, Mathematical

Programming, 61, doi: 10.1007/BF01582144

Koch, E. W., Rosolowsky, E. W., Lockman, F. J., et al.

2018, MNRAS, 479, 2505, doi: 10.1093/mnras/sty1674

Leroy, A. K., Hughes, A., Liu, D., et al. 2021, ApJS, 255,

19, doi: 10.3847/1538-4365/abec80

McMullin, J. P., Waters, B., Schiebel, D., Young, W., &

Golap, K. 2007, in Astronomical Society of the Pacific

Conference Series, Vol. 376, Astronomical Data Analysis

Software and Systems XVI, ed. R. A. Shaw, F. Hill, &

D. J. Bell, 127

Pingel, N. M., Dempsey, J., McClure-Griffiths, N. M., et al.

2021, arXiv e-prints, arXiv:2111.05339.

https://arxiv.org/abs/2111.05339

Robitaille, T., Beaumont, C., Qian, P., Borkin, M., &

Goodman, A. 2017, glueviz v0.13.1: multidimensional

data exploration, 0.13.1, Zenodo,

doi: 10.5281/zenodo.1237692

Sánchez-Monge, Á., Schilke, P., Ginsburg, A., Cesaroni, R.,

& Schmiedeke, A. 2018, A&A, 609, A101,

doi: 10.1051/0004-6361/201730425

Smithsonian Astrophysical Observatory. 2000, SAOImage

DS9: A utility for displaying astronomical images in the

X11 window environment. http://ascl.net/0003.002

Stanimirovic, S. 2002, in Astronomical Society of the

Pacific Conference Series, Vol. 278, Single-Dish Radio

Astronomy: Techniques and Applications, ed.

S. Stanimirovic, D. Altschuler, P. Goldsmith, & C. Salter,

375–396. https://arxiv.org/abs/astro-ph/0205329

Todd, M. J., & Yıldırım, E. A. 2007, Discrete Applied

Mathematics, 155, 1731

Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS,

192, 9, doi: 10.1088/0067-0049/192/1/9

http://doi.org/10.3847/1538-4357/aa6d58
https://arxiv.org/abs/2112.08183
http://doi.org/10.1051/0004-6361:20053818
http://doi.org/10.1086/117668
http://doi.org/10.1007/BF01582144
http://doi.org/10.1093/mnras/sty1674
http://doi.org/10.3847/1538-4365/abec80
https://arxiv.org/abs/2111.05339
http://doi.org/10.5281/zenodo.1237692
http://doi.org/10.1051/0004-6361/201730425
http://ascl.net/0003.002
https://arxiv.org/abs/astro-ph/0205329
http://doi.org/10.1088/0067-0049/192/1/9

	Introduction
	Relationship to CASA

	The packages
	spectral-cube
	radio-beam
	pvextractor
	uvcombine
	casa-formats-io
	statcont
	astropy regions

	Using radio-astro-tools for development of other packages
	glue

	Tutorials
	The integrated ecosystem for radio astronomy
	Reprojecting images with reproject
	Regions-of-interest with regions and interactive matplotlib tools
	All CASA-produced images are spectral cubes

	Summary
	Approximations in solving for the common beam in radio-beam
	Beam Convolution and Deconvolution

	Feathering comparison between UVCOMBINE and CASA

