

The Future of Radio Astronomy

Karen O'Neil

The Present

Arecibo Telescope

305m diameter dish

0.4 -10 GHz

7-pixel FPA (1.2-1.5 GHz)

 $-01^{\circ} < \delta < 38^{\circ}$

Resolution:

15'(0.3 GHz) - 0.4'(10 GHz)

60% of astronomy time is being used for surveys (ALFA)

The Present The GBT

100m diameter dish

0.1 -100 GHz

7-pixel FPA (18 - 26 GHz)

64-pixel bolometer array

 $-45^{\circ} < \delta < 90^{\circ}$

Resolution:

13' (0.1 GHz) -6'' (100 GHz)

35% efficiency at 90 GHz

The Present The EVLA

27 antennas, 25m diameter dishes

1 - 50 GHz

 $-45^{\circ} < \delta < 90^{\circ}$

Resolution: 13' (74 MHz, D-config) - 0.05" (45 GHz, A-config)

The Present Other Telescopes (an incomplete list)

Telescope	Diameter	Freq Range	
Efflesburg	100m	0.4-90 GHz	Efflesburg, Germany
Nançay	20m-40m (10 panels)	1-3.5 GHz	Nançay, France
Lovell	76m	0.15 – 26 GHz	Jodrell Bank, England
Parkes	64m	0.4-23 GHz	New South Wales, Australia
Nobeyama	45m	20-150 GHz	Nobeyama, Japan
GMRT	30 x 45m	0.05 – 1.4 GHz	Pune, India
IRAM 30m	30m	80-280 GHz	Pico Velata, Spain
Westerbork	14 x 25m	0.25- 9 GHz	Westerbork, Netherlands
ATCA	6 x 22m	1.2-106 GHz	New South Wales, Australia
Plateu de Bure	6 x 15m	80-280 GHz	Plateau de Bure, France
Nobeyama Array	6 x 10m	80-230 GHz	Nobeyama, Japan

The Future Camera Development

- Traditional Feed Horn Arrays
 - Integrated feed designs will allow for 100s of pixels with wide bandwidth
 - Cooled designs will be competitive with existing receivers
 - Challenges:
 - Hardware integration vs. access to components
 - Signal processing (A/D converters & backend processing costs)
 - Data issues processing costs, visualization, archiving
 - Requires generational improvement over existing systems

The Future Camera Development

- Phased Array Feeds
 - Potential for many 100s pixels on the sky
 - Could allowed for steered beams, improved RFI excision
 - Cooled designs will be competitive with existing receivers
 - Can potentially pack many more beams onto telescope
 - Challenges:
 - First cooled PAF not yet in operation*
 - Signal processing costs will limit bandwidth and beams
 - Data issues processing costs, visualization, archiving
 - First cooled PAFs should be here soon!

The Future Camera Development

Bolometer Arrays

- Potential for many 1000s pixels on the sky
- Extremely sensitive technology
- New designs should ne significantly more sensitive
- Challenges:
 - Reaching sensitivity limits extremely difficult
 - No system yet exists which consistently meets theory

The Future

Specialty Instruments

- Wideband receivers
 - Ku receiver for Galactic Center pulsar Search
 - L/S receiver for pulsar search and timing
- Specialty backends
 - FPGA backends for pulsar timing
 - Analog receiver for 14 GHz bandwidth CO search
- Etc

Single Dish and Arrays

• FAST:

- Five hundred metre Astronomical Spherical Telescope
- Built in southwest China
- Coming online 2016
- Up to 5 GHz
- Innovative design
 - Inner 300m for observing

- LMT (Large Millimatre Telescope)
 - 32m diameter now; 50m eventually
 - In Puebla, Mexico
 - 75-275 GHz range
 - First proposal call very soon

- ALMA (Atacama Large Millimetre Array)
 - 84-720 GHz (eventually)
 - In Atacama Desert, Chile
 - Main Array: 50 x 12m antennas
 - + Total Power Array 4 x 12m
 - + Atacama Compact Array (ACA): smaller array of 12 x 7m antennas
 - Early science call (16 telescopes) out!

- MeerKAT
 - 64, 13.5m telescopes
 - -0.6 14.5 GHz
 - In Karoo, South Africa
 - KAT-7 now online and working!
 - Complete by 2018

- ASKAP (Australian Square Kilometre Array Pathfinder)
- 36, 12m antenna
- 0.7-1.8 GHz (eventually to 2.5 GHz)
- Planned completion in 2013
- In Western Australia

- SKA (Square Kilometre Array)
 - International partnership between 67 organisations in 20 countries
 - "3, 000 dish antennas, each about 15 m wide"
 - + "two other types of aperture array antennas"
 - + "five spiral arms extending to distances of at least 3 000 km from the centre of the array"
 - Construction 2016, full science 2024

New Telescopes Single Dish and Arrays

North American Array

- Combination of existing & new telescopes in the northern hemisphere
- Works from ~1 − 50+ GHz, filling in frequencies above SKA
- Will require new/refurbished telescopes and systems
- Can be started immediately

The Future of Radio Astronomy...

is very bright

- Single dish telescopes with cameras will provide major leap in science research
- Fantastic new arrays being built
- Possibility of SKA →
 - Increased interest, funding for radio astronomy
 - New telescopes and improved instrumentation
 - Possibility of very high resolution and sensitivity telescopes through SKA