(from a single dish perspective)

Dr. Karen O'Neil Green Bank Site Director

Single Dish Telescopes Today

- Green Bank Telescope (100m diameter):
 - Frequency range: 0.1-116 GHz
 - Sky coverage: $-50^{\circ} < \delta < 90^{\circ}$
 - Resolution: 40' 0.1'
 - Approx. ≤5,200 hours/year under "open skies" agreement
- Arecibo Telescope (305m diameter):
 - Frequency range: 0.4-10 GHz
 - Sky coverage: $-05^{\circ} < \delta < 38^{\circ}$
 - Resolution: 15' 0.4'
 - Approx. 4750 hours/year under "open skies" agreement

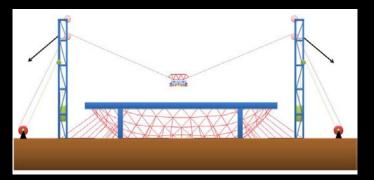
Single Dish Telescopes Today

Telescope	Diameter	Frequencies	Location	Astronomy Time
Arecibo	300m	0.4-10 GHz	Puerto Rico, USA	~80% open skies
GBT	100m	0.1-116 GHz	West Virginia, USA	≤85% open skies
Efflesburg	100m	0.4-90 GHz	Germany	40% open skies
Lovell	76m	0.2-26 GHz	Jodrell, UK	UK/EU only
Nançay	200x40 m	1-4 GHz	Nançay, France	EU only
Parkes	64m	0.4-23 GHz	Parkes, Australia	100% open skies
Sardinia	64m	0.3-26.5GHz	Sardinia, Italy	Limited availability
LMT	32m	75-350 GHz	Pico Veleta, Mexico	UMass, INAOE
IRAM	30m	80-280 GHz	Pico Veleta, Spain	100% open skies
SHAO	64m	1.4-43 GHz	Shanghai, China	Primarily VLBI

New Telescopes

China – QTT (2018):

- II0m, fully steerable antenna
- Five+ year project
- Construction to begin in 2016 (?)
- 0.2-117 GHz frequency range

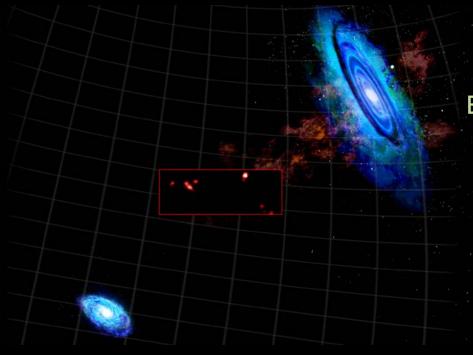


New Telescopes

China – FAST (2017?):

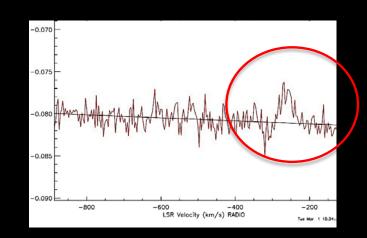
- 500m aperture, 300m radius antenna
- Suspended feed cabin

- HARDYN HA
- Active reflector (cable mesh + actuators, real time control)
- 70 MHz 3 GHz frequency range
- Tracking range 4-6 hours (za $\leq 40^{\circ}$
- 19 pixel L-band feed

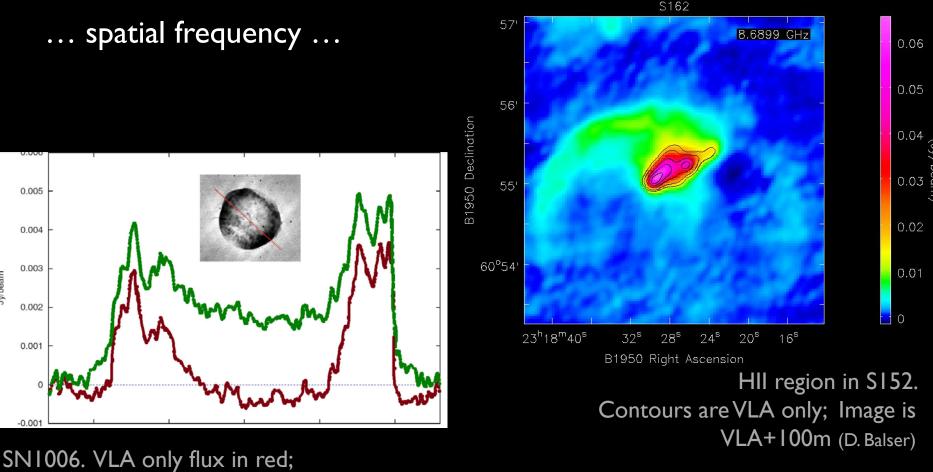

Telescope	Diameter	Frequencies	Location	Astronomy Time
Arecibo	300m	0.4-10 GHz	Puerto Rico, USA	~80% open skies
GBT	100m	0.1-116 GHz	West Virginia, USA	95% open skies
Efflesburg	100m	0.4-90 GHz	Germany	40% open skies
Lovell	76m	0.2-26 GHz	Jodrell, UK	UK/EU only
Nançay	200x40 m	1-4 GHz	Nançay, France	EU only
Parkes	64m	0.4-23 GHz	Parkes, Australia	100% open skies
Sardinia	64m	0.3-8 GHz*	Sardinia, Italy	
LMT	32m**	75-350 GHz	Pico Veleta, Mexico	TBD
IRAM	30m	80-280 GHz	Pico Veleta, Spain	100% open skies
Shanghai	65m	1-43 GHz	Shanghai	Primarily VLBI
QTT	110m	0.2-117 GHz	Xinjaing, China	TBD
FAST	500m	.07-3 GHz	Gixhou, China	TBD

* To be upgraded to 100 GHz;

** To be upgraded to 50m


Single Dish Telescopes

Its all about sensitivity...


The GBT is the only telescope in the world which can reliably map gas to extremely low densities (10¹⁷ cm⁻²)

Blocked aperture of other large single dish telescopes prevents deep, detailed maps

Large single dish telescopes are necessary for diffuse gas detections.

Single Dish Telescopes

GBT+VLA flux in green. (Dyer, et al. 2009 AJ)

Only large dishes provide information on low spatial frequencies

Single Dish Telescopes

Designing new

Radio Cameras

...and ease of use.

Optimized, cooled receivers High load, precision engineering

Simple and sensitive, large single dish telescopes are ideal test beds for new instrumentation and ideas,

Single Dish Telescopes - Now

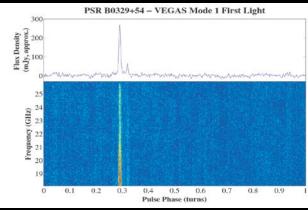
Primary limitations:

- Instantaneous field of view
 - Limited to a single beam/few beams on the sky
- Interference
 - More difficult to remove with single beam than array
- Clean beam
 - Not true for all telescopes, but often a problem
- Angular resolution
 - Confusion limit is readily reached due to resolution

Single Dish Telescopes - Now

Primary limitations:

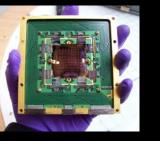
- Instantaneous field of view
 - Limited to a single beam/few beams on the sky
 Solution: Radio Cameras
- Interference
 - More difficult to remove with single beam than array
 Solutions: Mitigation, Excision, Cameras (PAF)
- Clean beam
 - Not true for all telescopes, but often a problem
 - Solution: Off-axis design (e.g. GBT)
- Angular resolution
 - Confusion limit is readily reached due to resolution
 Solution: None need interferometric array


Improved Sensitivity

- Lower noise amplifiers
 - Possible in some cases; will always improve sensitivity
- Wide bandwidth
 - Aids for continuum, pulsar work
 - Also useful when interested in multiple lines
- Optimized systems
 - Continued improvements in hardware/matched parts for receivers and data transmission
 - Telescope improvements at high freq. (pointing, surface)

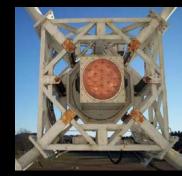
Digital Signal processing

FPGA/GPU backends Greatly increased dynamic range Increased spectral and time resolution Readily increased bandwidth Highly configurable Excellent tool for RFI excision



Arecibo

PUPPI: FPGA-based pulsar backend <u>GBT</u> GUPPI: FPGA-based pulsar backend VEGAS: FPGA+GPU backend


Radio Cameras:

Three primary types: Traditional feed horn arrays Phased array feeds Bolometer arrays

Provide greatly increased instantaneous field of view

HCN J=1-0 HCO+ J=1-0 10^{-200} HCO+ J=1-0 HCO+ J= Improved sampling Potential for RFI excision

Radio Cameras:

GBT:

- 7-pixel 18-26 GHz traditional feed array (on telescope)
- 64+ pixel 80-100 GHz bolometer array (on telescope)
- 16 pixel 93-116 GHz traditional feed array (2015)
- 16+ element 90-100 GHz phased array feed (2016?)
- 8 element 0.7-0.9 GHz traditional array (2016?)
- 19+ element 1-2 GHz phased array feed (2016?)

Arecibo:

- 7 element I-2 GHz traditional feed array (on telescope)

Two new, large telescopes coming online in the next 5+ years

Radio cameras are becoming a reality;

> Vast leap forward for single dish telescopes

New hardware provide sensitivity increases

Existing telescopes can upgrade, improve

FPGA/GPU technology providing vast improvements in signal reduction

Specialty backends, wide bandwidth, excellent baselines, high resolution

Two new, large telescopes coming online in the next 5+ years

Radio cameras are becoming a reality;

> Vast leap forward for single dish telescopes

New hardware provide sensitivity increases

Existing telescopes can upgrade, improve

FPGA/GPU technology \rightarrow vast improvements in signal reduction

Specialty backends, wide bandwidth, excellent baselines, high resolution

So what about the rest of radio astronomy?

Radio Astronomy – Telescopes Arrays

Telescope Arrays provide details otherwise unattainable

- Do not suffer as readily from confusion
- Far less affected by RFI
- Lack single dish sensitivity, low spatial frequencies, simplicity

Major Radio Telescope Arrays Today							
Telescope	# Dishes	Diameter	Frequencies	Comments			
ALMA	66	7m-12m	84-720 GHz	Operational (more next week!)			
VLA	27	25m	1-50 GHz	New Mexico; Recently upgraded			
VLBA	10	25m	1-96 GHz	Array across North America			
GMRT	30	45m	0.1-1.4 GHz	Pune, India			
Westerbork	14	25m	0.3-9 GHz	Westerbork, Netherlands			
ATCA	6	22m	1-106 GHz	NSW, Australia			
Plateu de Bure	6	15m	80-280 GHz	Plateu de Bure, France			
Nobeyama	6	10m	80-230 GHz	Nobeyama, Japan			

Telescopes Arrays – The Future

MeerKAT (South Africa – 2017) Sixty-four 13.5m telescopes 0.6-15 GHz (approximately) Traditional feed horn technology Seven prototype antennas open for science

ASKAP (Australia –2014??) Thirty-six 12m telescopes 0.7-1.8 GHz 188 element (30 beam) PAFs First 6 antennas in early science

Telescopes Arrays – The Future

Square Kilometre Array

- Southern Africa and Australia
- 5,000 m²/K (area/system temperature)
- 0.07 10 GHz frequency range
- FoV: 200 sq degrees (< 0.3 GHz); I sq degree (> I GHz)
- Timeline:
 - 2020: 10% complete (phase I)
 - 2030: 100% complete (phase II)

New research and instrumentation: Vastly improved field of view; Increased sensitivity & dynamic range; Improved opportunities for RFI excision (R&D needed)

New telescopes coming soon:

Significant improvements to existing telescopes New large single dish telescopes (China) New powerful arrays in Australia, South Africa

Critical studies cannot be done outside radio wavelengths

- Most phenomenon require sensitivity and resolution
- The future requires sensitive single dish telescopes and arrays

New instrumentation and development is providing major leap forward in scientific research in radio astronomy

New international large telescopes and arrays are coming online

The future of radio astronomy looks very bright!

Critical studies cannot be done outside radio wavelengths

- Most phenomenon require sensitivity and resolution
- The future requires sensitive single dish telescopes and arrays

New instrumentation and development is providing major leap forward in scientific research in radio astronomy

New international large telescopes and arrays are coming online

The future of radio astronomy looks very bright ʔ

Funding for U.S. single dish telescopes is in jeopardy GBT (VLBA) recommended for divestment; Arecibo funding decreasing.

International funding has decreased in the past few years; Costs estimates for SKA continue to increase

The future of radio astronomy looks very bright $\ref{eq:temperature}$

Funding for U.S. single dish telescoper is in jeopardy GBT (VLBA) recommended for the past few years; International fur the past few years; Costs estimates for SKA continue to increase

The landscape for astronomy is changing:

- International instruments are coming online (ALMA, FAST, etc)
- Open skies access is declining <u>rapidly</u> (disappearing?)
- Funding is increasingly difficult even as construction costs grow

But...

Fantastic opportunities exist now, and the future <u>can</u> be even better

The astronomy community in the U.S. and internationally needs to decide what the future should be and than act. Now.

