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Flux Density (Jy)

What do we mean by “continuum’’?
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Signal Strength & Noise

But we can make our measurements much more sensitive by
measuring the signal over a very broad bandwidth

T
AT = —=
\/tAv

much of this talk will be about overcoming the
practical challenges in doing so.
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Emission Mechanisms: THE SPECTRUM OF CONTINUUM EMISSION
FROMATYPICAL GALAXY (M82)
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See Condon (1992, ARA&A)
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Synchrotron Emission

— Radiation due to the acceleration of relativistic charged particles in a
magnetic field

— Observed spectrum is simply related to the energy spectrum of the charged
particles (generally declining with frequency)

N(E)dE = NoE~4 < » I,(v) = Io (1> h

a=(A-1)/2 ~ 0.7
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Synchrotron Emission

— Radiation due to the acceleration of relativistic charged particles in a
magnetic field

— Observed spectrum is simply related to the energy spectrum of the charged
particles (generally declining with frequency)

N(E)dE = NoE~* < » I,(v) = Io (1> h

Vo

— More energetic particles lose their energy more rapidly resulting in the
spectrum to become steeper with time g

dt
— To maintain a shallow spectrum synchrotron spectrum requires a constant

x —B?E?
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Synchrotron Emission: Astrophysical Context

~200 kpc

Typically seen in very energetic
events: AGN, Supernovae,
Galaxy cluster mergers.

Quasar 3C175
YLA &em image (¢) NRAD 1996
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Synchrotron Emission: Astrophysical Context

~200 kpc .2’

Flat spectrum synchrotron
dominates at high frequences

/ & tends to be variable
®

Steep spectrum synchrotron
dominates at low frequencies &
tends to be strong & stable.

Quasar 3C175
YLA &em image (¢) NRAD 1996

12
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Synchrotron Polarization

* Synchrotron radiation is inherently linearly polarized
* bears imprint magnetic fields in situ, as well as along L.O.S. (Faraday Rotation)
* GALFACTS: Full-Stokes, all-Arecibo-sky, continuum survey; 300 MHz bandwidth
* Science:
* Uncover new, low-surface brightness supernova remnants & HIl regions
* Measure the properties & effects of the Galactic magnetic field in a wide range of environments
* Thermal-nonthermal separation of low-b Galactic continuum emission.
» Foreground removal for Planck (CMB intensity & Polarization).
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° R ()
Free-Free Emission @B{/\/\/

— Bremmstrahlung radiation of thermal, ionized electrons “richocheting” off of

ions
fo ~ neni\/T

— At cm wavelengths, generally approximately flat spectrum (optically thin)
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Thermal (“Black Body’’) Emission

ZkBT I hv
IV(T, 1/) = A2 oz _ 1 r = ﬁ,

Dusty Galaxy : 7'~ 30K — Apeor = 170pum (z << 1)
CMB :T'=2720K — Apear = 1.9mm

A means to study thermal material (mass, temperature, particle
sizes). Does not require the matter to be ionized | charged.
Pervasive but often difficult to detect at cm wavelengths.

-’ 15
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“Grey Body’” Emission

In the cm & mm, “black bodies” are often not efficient radiators

I, = IV,BBXE'rad

~ 1, BB (A< Ap)
3

where typically 0.5 <6 <2

|6
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“Grey Body” Emission
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Sunyaev-Zel’'dovich Effect

A spectral distortion in the CMB caused by scattering off of hot electrons

Wavelength (mm)
10 5 2 1 0.5
e Py

T~ N—""_—CMB

Intensity (MJy SI‘_I)
o
e |

20 50 100 200 500

Frequency (GHz)
Carlstrom, Holder & Riess (2002) L
OBSERVER

At the (radio) frequencies most sensitive to the SZE
from the ground, it appears as a decrement, i.e., a
shadow
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Sunyaev-Zel’dovich Effect

A spectral distortion in the CMB caused by scattering off of hot electrons

Wavelength (mm)
10 5 2 1 0.5
e Py

- f T~ CMB

Intensity (MJy SI‘_I)

structure in the cluster atmosphere (e.g.
shocks).

Carlstrom, Holder & Riess (2002)
OBSERVER

At the (radio) frequencies most sensitive to the SZE
from the ground, it appears as a decrement, i.e., a
shadow

19
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Challenges

“Lacking the rapid time variability of pulsars and ... narrow spectral
signhatures ... astronomical continuum sources are distinguishable from
receiver baseline drifts, atmospheric emission fluctuations, ground
radiation, and each other only by their positions on the sky.These
competing “‘signals” often exceed radiometer noise .... In addition, telescope
gain uncertainties and pointing errors affect even strong sources. The
continuum observer must understand both these noiselike and intensity-
proportional errors to obtain the best possible data and to make reliable
error estimates for measured source parameters.’

-].Condon, Single Dish School Procedings

|. Pointing

2. Confusion

3. Gain & Atmosphere fluctuations
4. Receiver Architecture

22
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Issue #l:Telescope Pointing

— Residual, time-varying pointing errors can introduce artifacts in your
map near bright sources.

— Repeatable pointing errors are typically accounted for in the telescope
pointing model

— Non-repeatable pointing errors
— thermal: timescale ~| hour (night vs day).
— Solution: Monitor a pointing calibrator

23
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Issue #2: The Effect of Extragalactic Sources (Radio)
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Issue #2: The Effect of Extragalactic Sources (Radio)
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Distribution of Unresolved Source Residuals
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Condon (1974); Scheuer (1956)

ong tail: use at least 5 sigma threshold (src/30 beams)

2015 NAIC/NRAO Single Dish Summer School B.Mason



50 extragalactic confusion limits for Arecibo (d = 220 m) and the GBT (d = 100 m).

1000 g7 — T T ] —2.7
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The Effect of Extragalactic Sources (mm/submm)

2015 NAIC/NRAO Single Dish Summer School B.Mason



The Effect of Extragalactic Sources (mm/submm)

see also Blain et al.
2002
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Solutions:

) be aware and plan accordingly

2) there are sometimes pre-existing large area
surveys which can be used to identify sources and
reduce confusion

NRAO VLA Sky Survey (NVSS): 1.4 GHz
GB6: old 300°+7-beam receiver, 5 GHz

AT20G: southern-sky, 20 GHz

PUIRIO RICO
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Deep radio map of Draco dSphs

GBT data 4 deg x 4 deg
L d
. ) L-band (1.4 GHz)
-same frequency as NVSS
| >
. Stokes 1
.
*
. .
-~
" . i
.
’ 1 deg b

Spekkens+ 2013



Deep radio map of Draco dSphs

Point-source subtracted: GBT — NVSS

1 deg

Spekkens+ 2013

4 deg x 4 deg

L-band (1.4 GHz)
-same frequency as NVSS

Stokes I



Issue #3: Gain Fluctuations

Extra Noise Term

ON Gt )T e + Ty + Typyy }

OFF \/ Gt )Ty + T 7y, }

W
\Y4

On — Oﬁ = G(tl)TSRC + A(;(TRX + TSKY)
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Issue #3: Gain Fluctuations

Radiometer

ﬁ Equation
o \/

AT [ 1
OFF \/ Tsys V AvT
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Issue #3: Gain Fluctuations

Radiometer Extra Noise Term

¢ Equation
\/ q /

ON

AT [ 1 1 N AG\*
OFF \/ Tsys VAvt \ AvT G
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Issue #3: Gain Fluctuations

Radiometer Extra Noise Term

* Equation
o \/ /
AT _ [ 1 [ 1 (AGY
OFF \/ Teys YV Avt | Avrt G
AG

? ~ 10—3@1HZ

Limiting the useful RF bandwidth to ~ | MHz
in one second, compared to many GHz in
principle available.

This is a big problem! (see Rx architectures)
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Issue #4: Atmospheric Emission

ON G{TSRC + TRX + TATM (tl)}

\V
OFF \/ G{TRX + TATM (tz)}

On - Off = GAT,,
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Issue #4: Atmospheric Emission

ON \/ G{TSRC + TRX + TATM (tl)}

OFF \/ G{Tpx + Ty (1,)

On - Off = GAT,,

How fast do G(t), T orm(t) vary, and what is the
character of the variations!?
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A ©® o © Fourier transform
<O
X A S =P o0 characterize
< noise

antenna temperature
%
%
o

Receiver (radiometer) noise is “white”’: stationary fuzz.

Both gain fluctuations and atmospheric fluctuations
tend to show erratic, long-term drift (*“‘l1/f noise”).

39
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Postdetection power spectrum of the receiver output

& [ I [ T T T ] T T
Atmosphere & gain .
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| | 1 R 1 1
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Postdetection power spectrum of the receiver output

i [ I T T T T ] T T
Atmosphere & gain .
10.0 Fluctuations: | /f Gau55|.an, uncorrglated
Power spectrum Radiometer noise: =1
White (flat) power spectrum
D
W
1.0
003 - —
| ! 1 R 1 1
0.1 (). 3 1.0 3.0

v (Hz)

Modulate the sky signal faster than this characteristic timescale (nod
telescope, chop subreflector, beamswitch receiver beams, scan the
mtelescope) to eliminate the extra noise in your measurement.
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Postdetection power spectrum of the receiver output

| | | | | I | | 1 |
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Less bandwidth
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Characteristic Timescales for
Broadband Measurements

Atmosphere 0.]-few Hz
chopping (secondary/tertiary) or rapid scanning
“common mode” subtraction for imaging arrays
Gain & offset fluctuations for coherent amplifiers: very
instrument-dependent; can be 100s of Hz
receiver architecture:
-switching (dicke switch, correlation radiometer)
-build a stable receiver!

Bolometers are typically more stable: gain & offset
fluctuations ~| Hz
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Characteristic Timescales for
Broadband Measurements

Atmosphere 0.|-few Hz

chopping (secondary/tertiary) or rapid scanning

’

“common meode—stbtractionfar imaging arrays
5ain & offset fluctuations for coherent amptifiers: very
instrument-dependent; can be 100s of Hz
receiver architecture:
-switching (dicke switch, correlation radiometer)

-build a stable receiver!
)

Bolometers are typicall  AKA beam switching, differencing...
fluctuations ~| Hz

PUIRIO RICO
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Dicke-Switching Receiver
Feed Horns

Rapidly alternate between feed
horns to achieve theoretical
noise performance.

Circulating Switch
(Dicke Switch)

G{Tgge + Tiy + Typpy b G Amplifier
G{T,, +T,.,}
On - 0Off = GTSRC +(AG = O)(TRX + TSKy)
? Detector
For Tqrc<<Tgys gain fluctuations
don’t contribute significantly to G(t1) V142
the noise 235} 3?:5

AP=G(V] -V;)
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Data from the GBT Ka-band Receiver
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The Price of Beam Switching

* Depends on the type of Observation

— Photometric (targetted Nod): possibility of confusion in the off-
source (reference) positions; no image to check your assumptions.

— Mapping: loss of some spatial frequency information, much of which

can be restored by deconvolution techniques (Emerson Klein &
Haslam or EKH; MEM; etc.).
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The Price of Beam Switching

* Depends on the type of Observation

— Photometric (targetted Nod): possibility of confusion in the off-
source (reference) positions; no image to check your assumptions.

— Mapping: loss of some spatial frequency information, much of which

can be restored by deconvolution techniques (Emerson Klein &
Haslam or EKH; MEM; etc.).

* Sqrt(2) to 2 in RMS Noise for a given integration time
—you spend half your observing time looking away from your source

RMS(AT) = V2 x RMS(Tsys.on)

ﬁ AT = Tsys,on o TSyS,Off
V

OFF \/ \/_ sys on 2 X Tsys on
V Av Ton \/AV Ttotal
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The Price of Beam Switching

* Depends on the type of Observation

— Photometric (targetted Nod): possibility of confusion in the off-
source (reference) positions; no image to check your assumptions.

— Mapping: loss of some spatial frequency information, much of which

can be restored by deconvolution techniques (Emerson Klein &
Haslam or EKH; MEM; etc.).

* Sqrt(2) to 2 in RMS Noise for a given integration time
—you spend half your observing time looking away from your source

Sqrt(2) can be gotten back with other
i% architectures: continuous comparison/
correlation radiometers; pseudo-correlation
\/ radiometers, correlation polarimeters, etc. n)

OFF \/ \/_ sys on 2 X Tsys on
V Av Ton \/AV Ttotal
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Data from the GBT Ka-band Receiver
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Data from the GBT Ka-band Receiver
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Higher-Order Differences: Symmmetric Nodding

— For sensitive photometry, one level of differencing is usually not enough
— Gradient in sky emission, or with time

— Dual-feed systems: Slight differences in feedhorn gains or losses

-—'
—-
-
—'
-

-
-
-
-
-

* A =F1_F2 =_Ssrc+A
VARV, B =F—F, =Sg.+A
o Vv (A-B)/2 = Ssrc

*Only penalty is slew time
*Generalizes to yet higher order schemes (eg,
symmetric double-nod)
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Bolometer
Arrays

Large-N

Large Bandwidth

Low intrinsic noise is
possible (“Background
Limited” Performance)

Tsys — Lgky ™ 25 K

More stable
(knee ~ 1 Hz vs 100s of
Hz)
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Absolute Calibration

What is the specific intensity at a given

point in the sky in real units: Watts/Hz/
mA72/Sr.

Relative calibration is a routine application of continuum measurements: “Flux
Calibration”

-In each observing session measure a standard flux calibrator of known flux density
(e.g., Baars et al. 1977)

But how do we know the flux density of these sources?

54
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‘s

AL . e~ oo = e :
ARsolute Calibrata

O E ‘ .y
A M‘h":ﬁ.::' *?‘iﬂ; : =
g s

'Findlay, Hvatum & Waltman (1965)
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Je

Alsolute Caljtgr, i

Measure one bright source accurately (in . T R ¥
8 Y ( -t " Nr«jﬁ.’*“\' -
an absolute sense) o

Transfer to fainter, more numerous, more
useful sources by accurate relative
measurements

- usually with a larger telescope

'Findlay, Hvatum & Waltman (1965)

N RAO AREC:%?S%SF&V:YORY : 4 Y , . | 56 5
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Absolute Calibration (today)

AT = 3.393 mK

WMAP ... < |% planetary
brightness temperature
measurements

(Weiland et al. 201 1)

CMB Dipole
COBE
(3.347 +/- 0.008) mK

57
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3.0 mm

10

§2000)
100
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Fig. 3.— Comparison of WMAP W-band seasonal averages (black diamonds; Table [6)
to the Mars model of Wright (1976, 2007). The WMAP observations have been corrected
to absolute brightness. Model values (red line) have been rescaled by a factor of 0.953 to
bring them into overall agreement with the observations; thick portions of the line indicate
observing seasons. Data quality masking can skew the mean times of observations from the
mean of the seasonal interval, as is evident in the second observing season.

Weiland et al. 2010
Model of Ned Wright
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Mars * Global Dust Storm

June 26, 2001 September 4, 2001
Hubble Space Telescope * WFPC2

NASA, J. Bell (Cornell), M. Wolff (SSl), and the Hubble Heritage Team (STScl/AURA) ¢ STScl-PRC01-31
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Absolute Calibration (today)

AT = 3.393 mK

WMAP ... < |% planetary

MB Dipol
COBE (C; 347 -:f.ooeo 08) mK brightness temperature
| | measurements
(Weiland et al. 201 1)

See Perley & Butler (2014) and Partridge et al. (2015), who leverage
these onto standard radio (cm) calibrator sources [5% abs.accuracy in

the | to 50 GHz range]
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