VLA Data Reduction Tutorial

Emmanuel Momjian (NRAO)

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Introduction

- We will use CASA 4.0
- This tutorial is based on the VLA high frequency spectral line tutorial targeting the AGB star IRC+10216.
- The array was in D-configuration.
- The frequency band was Ka (26.5 40 GHz)
- There are two spectral windows in this data set. One is centered on the HC3N line and the other on the SiS line.
- The full tutorial can be found at: <u>http://casaguides.nrao.edu</u>

(Under CASA Tutorials, go to Karl G. Jansky VLA Tutorials IRC+10216 Tutorial).

The data set

- You were asked to download a file from
 - ftp <u>ftp.aoc.nrao.edu</u>
 - login as anonymous, enter your email address for the password.
 - cd /staff/emomjian/Mexico
 - get data.tar.gz
- Un-compress the file, e.g., tar -zxvf data.tar.gz
- The result will be four files:
 - day2_TDEM0003_20s_full
 - IRC10216_spls.ms
 - IRC10216_HC3N.image
 - IRC10216_SiS.image

The data set

- 'day2_TDEM0003_20s_full' is a measurement set
- This data set is different than the one in the original tutorial:
 - Time averaging of 20 seconds have been applied (to make the size of the file more manageable).
 - The antenna position corrections have been applied.
 - Opacity corrections have been applied.

CASA Startup

> casapy

CASA Version 4.0.0 (r22208) Compiled on:Wed 2012/12/05 00:58:44 UTC

For help use the following commands:

- tasklist
- Task list organized by category
 One line summary of available tasks
- taskhelp help taskname
- Full help for task
- toolhelp
- One line summary of available tools

help par.parametername - Full help for parameter name

Activating auto-logging. Current session state plus future input saved. Filename : ipython-20121219-184629.log Mode : backup Output logging : False Raw input log : False Timestamping : False State : active **** Loading ATNF ASAP Package... **** ...ASAP (trunk rev#21811) import complete ***

Initial examination and flagging

- List the summary of the data set: listobs
- Make a graphical plot of the antenna positions: plotants
- Plot the data: plotms
- Flag some bad data: flagdata

CASA: listobs

- List the summary of the data set: listobs
 - type default listobs in casa, hit enter
 - type inp
 - set
 - vis = 'day2_TDEM0003_20s_full'
 - type goCheck the casa logger

Data set Summary

F:	ields:	: 4															
	ID	Code	Name	e		R	A		De	cl		Ð	poch	S	cId	nRows	
	2	D	J09	54+1743	3	0	9:54:56	.82363	+17	.43.31.	. 2224	4 J	2000	2		32726	
	3	NONE	IRC-	+10216		0	9:47:57	.38200	+13	.16.40	. 6600	0 J	2000	3		99540	
	5	F	J122	29+0203	3	1	2:29:06	.69973	+02	.03.08	5982	2 J	2000	5		5436	
	7	B	J133	31+3030)	1	3:31:08	.28798	+30	.30.32	9589	9 J	2000	7		2736	
S	pectra	al Wir	ndows	s: (2	unique	spec	tral wi	ndows	and	1 uniqu	ie po	ola	rizat	ion	setu	ıps)	
	SpwII	D #C1	ans	Frame	Ch1 (MH2	:)	ChanWi	d(kHz)	TO	tBW(kH:	z) (Cor	rs				
	0		64	TOPO	36387.2	295	125		80	00	1	RR	RL	LR	LL		
	1		64	TOPO	36304.5	42	125		80	00	1	RR	RL	LR	LL		
S	ources	s: 10															
	ID	Name			Sp	wId	RestFre	q(MHz)	Sy	sVel (kr	n/s)						
	0	J1008	3+073	30	0		0.03639	232	-0	.026							
	0	J1008	3+073	30	1		0.03639	232	-0	.026							
	2	J0954	4+174	43	0		0.03639	232	-0	.026							
	2	J0954	4+174	43	1		0.03639	232	-0	.026							
	3	IRC+1	1021	6	0		0.03639	232	-0	.026							
	3	IRC+1	1021	6	1		0.03639	232	-0	.026							
	5	J1229	9+020	03	0		0.03639	232	-0	.026							
	5	J1229	9+020	03	1		0.03639	232	-0	.026							
	7	J1331	1+303	30	0		0.03639	232	-0	.026							
	7	J1331	1+303	30	1		0.03639	232	-0	.026							
A	ntenna	as: 19	9:														
	ID	Name	Sta	ation	Diam.	L	ong.	1	Lat.								
	0	ea01	WO9	9	25.0 m	a –	107.37.	25.2 .	+33.	53.51.0)						
	1	ea02	E02	2	25.0 m	a –	107.37.	04.4 .	+33.	54.01.1	1						
	2	ea03	E09	9	25.0 m	- 1	107.36.	45.1 .	+33.	53.53.6	5						
	3	ea04	WO:	1	25.0 m	n -	107.37.	05.9	+33.	54.00.5	5						
	4	ea05	WO	8	25.0 m	- n	107.37.	21.6	+33.	53.53.0)						
	5	ea07	NO	6	25.0 m	n -	107.37.	06.9	+33.	54.10.3	3						
	6	ea08	NO:	1	25.0 m	- n	107.37.	06.0	+33.	54.01.8	3						
	7	ea09	E0(6	25.0 m	a –	107.36.	55.6	+33.	53.57.7	7						
	8	ea12	E08	8	25.0 m	a –	107.36.	48.9 .	+33.	53.55.1	1						
	9	ea15	WO	6	25.0 m	a –	107.37.	15.6	+33.	53.56.4	1						
	10	ea19	WO	4	25.0 m	- 1	107.37.	10.8	+33.	53.59.1	1						
	11	ea20	NO:	5	25.0 m	n -	107.37.	06.7 .	+33.	54.08.0)						
	12	ea21	EO:	1	25.0 m	- n	107.37.	05.7 .	+33.	53.59.2	2						
	13	ea22	NO	4	25.0 m	a –	107.37.	06.5	+33.	54.06.1	1						
	14	ea23	E0	7	25.0 m	1 -	107.36.	52.4	+33.	53.56.5	5						
	15	ea24	WO:	5	25.0 m	a –	107.37.	13.0	+33.	53.57.8	3						
	16	ea25	NO	2	25.0 m	a –	107.37.	06.2 .	+33.	54.03.5	5						
	17	ea27	E03	3	25.0 m	a –	107.37.	02.8	+33.	54.00.5	5						
	18	ea28	NO	8	25.0 m	- 1	107.37.	07.5	+33.	54.15.8	3						

. .

Summary of Observing Strategy

Complex gain calibrator	J0954+1743; field id=2
Bandpass calibrator	JI229+0203; field id=5
Flux calibrator	JI33I+3030 (3C286); field id=7
Science target	IRC+10216; field id=3

Ka-band spws = 0, I

CASA: plotants

- To make a graphical plot of the antenna positions: plotants
 - type default plotants in casa, hit enter
 - type inp
 - populate the relevant adverbs, e.g.,
 - vis = 'day2_TDEM0003_20s_full'
 figfile = ''

– type go

Antenna locations from running plotants

CASA Plotter _ 🗆 🗙 ea28 400 ea07 ea20 200 ea22 Х (m) ea25 ea08 0 ea19 ea21 ea24 ea09 ea15 ea23 -200 ea12 ea03 ea05 ea01 -400-200 200 -4000 400 X (m) Mark Region Flag Unflag Locate Quit r 🔁 x=245.06203 y=442.60204

We choose ea02 as the reference antenna

- To plots the data using various types of axes: plotms
 Plot amp vs. time
 - type default plotms in casa, then type inp

vis	<pre>= 'day2_TDEM0003_20s_full'</pre>
xaxis	= 'time'
yaxis	= 'amp'
selectdata	= true
spw	= '0:4~60'
correlation	= 'RR, LL'
averagedata	= true
avgchannel	= '64'
coloraxis	= 'field'

. .

• In plotms, zoom in on the region very near zero amplitude for sources J0954+1743 and IRC+10216.

NRAC

• May need to zoom-in several times to get to this.

• Identify what's the cause of the bad points:

- Check the casa logger.
- Notice that all the baselines of these data points include antenna ea 12.
- Note the time range 03:40:00 to 04:10:00
- We could flag interactively/graphically, but we rather flag globally addressing the root cause of the problem.
- In plotms, click on 'Clear Regions'

- Now check spectral window I:
 - change '0:4~60' to '1:4~60' in the spw window on the side menu of plotms, and hit plot.
 - Zoom in again (several times).

INRAO

. .

Identify what's the cause of the bad points:
Make a region, and locate.

- The problem in spw 1 is due to ea07.
- Time range 03:21:40 to 04:10:00
- Hit the 'Clear Region' to remove the box.
- In the antenna field of plotsms, type !ea07 (this excludes all data points with antenna ea07). Zoom in several times to note that the bad points are no longer displayed.

CASA: flagdata

- We have identified two problematic antennas.
- To flag, use the task flagdata
- Default flagdata, then inp

vis	<pre>= 'day2_TDEM0003_20s_full'</pre>
mode	= 'manual'
spw	= '0'
field	= '2,3'
selectdata	= True
antenna	= 'ea12'
timerange	= '03:41:00~04:10:00'

Type go, and check the casa logger.

CASA: flagdata

- tget flagdata
- spw = '1'
- antenna = 'ea07'
- timerange = '03:21:40~04:10:00'
- Type go, and check the casa logger.

- Setting the flux density scale: setjy
- Making a calibration table for antenna gain curves and efficiencies: gencal
- To properly calibrate the bandpass in high frequency observations:
 - I. Phase only calibration (short solint) on the bandpass calibrator: gaincal
 - 2. Bandpass calibration applying (1) : bandpass
- The calibration table (1) is ignored in consequent steps. The bandpass table (2) is applied on the fly in consequent steps.

CASA: setjy

- Flux density calibration using 3C286.
- This source requires a model.
- Use the task setjy
- To find out if a model is available (default setjy)

vis	=	'day2_	_TDEM0003_	_20s_	_full'
listmodels	=		True		

- **Type** go
- The Ka-band models have '_A' in the names.
- For our data set, we will use 3C286_A.im

The logger will report: J1331+3030 (fld ind 7) spw 0 [I=1.7764, Q=0, U=0, V=0] Jy, (Perley-Butler 2010) J1331+3030 (fld ind 7) spw 1 [I=1.7795, Q=0, U=0, V=0] Jy, (Perley-Butler 2010)

Type go

Now set

٦

field = '7' modimage = '3C286_A.im'

istmodels	=	False
iold	_	171

CASA: gencal

- The task gencal allows for making various types of calibration tables for opacity, gain curve, tsys, etc..
- We will use this task to make a calibration table for the gain curves.
- The gaincurve describes how each antenna behaves as a function of elevation, for each receiver band.

CASA: gencal

- Default gencal, then inp
 - = 'day2 TDEM0003 20s full' caltable
 - = 'gaincurve.cal'
 - = 'qceff'

go

vis

caltype

'gceff' will write both antenna gain curves and antenna efficiencies in the output table.

CASA: gaincal

- Phase only calibration (short solint) on the bandpass calibrator: gaincal.
- This is to correct the phase variations with time before solving for the bandpass to prevent decorrelation.

CASA: gaincal

• default gaincal, then inp

vis
caltable
field
spw
solint
refant
gaintype
calmode
gaintable

=	'day2_TDEM0003_20s_full'
=	'bpphase.gcal'
=	' 5 '
=	'0~1:20~40'
=	'int'
=	'ea02'
=	'G '
=	'p'
=	'gaincurve.cal'

CASA: plotcal

- gaincal made the table bpphase.gcal
- Plot the derived solutions: plotcal default plotcal caltable = 'bpphase.gcal'
 - xaxis = 'time'
 - yaxis = 'phase'
 - = 331
 - = 'antenna'
 - = [0,0,-180,180]

subplot

iteration

plotrange

CASA: plotcal

NRAO

CASA: bandpass

Bandpass calibration: bandpass default bandpass = 'day2 TDEM0003 20s full' vis = 'bandpass.bcal' caltable 151 field = 'inf' solint ='ea02' refant = solnorm True =gaintable = ['gaincurve.cal', 'bpphase.gcal']

go

CASA: plotcal

12

- bandpass made the table bandpass.bcal
- Plot the derived amplitude solutions: plotcal default plotcal
 - caltable = 'bandpass.bcal'
 xaxis = 'chan'
 yaxis = 'amp'
 subplot = 331
 iteration = 'antenna'

NRAO

qo

CASA: plotcal

CASA Plotter

_ 🗆 X

•••

• Plot the derived amplitude solutions: plotcal

tget plotcal yaxis = 'phase'

go

CASA: plotcal

. .

- To bootstrap the flux densities of the secondary calibrators:
 - a) Phase only calibration (short solint) on all calibrators: gaincal
 - b) Amplitude only calibration (scan based) on all calibrators: gaincal, apply (a) on the fly
 - c) Derive the flux densities of the secondary calibrators: fluxscale, use (b) as input. This will also correct the amplitude solutions of (b) and write a new table.
- To calibrate the target source:
 - Phase only calibration (scan based) on the phase calibrator:
 gaincal
 - The amplitude will be calibrated using the table from (c).

- Apply the calibration tables on the target
 - The task to use is applycal
 - The various calibration tables relevant to the target source gets applied on the target. For instance:
 - The bandpass table.
 - The scan based phase calibration table.
 - The amplitude calibration table (written by fluxscale).
 - The calibrated data is written in the 'corrected column' of the ms.

- Examine the calibrated data with plotms.
- Identify bad data and/or antennas, flag, and redo all the calibration.
- Redo applycal and re-examine.
- If all look good, then
 - split the target source into a new ms (for convenience).
 - Subtract the continuum using uvcontsub
 - Doppler correct the data using CVEL (or let clean do the Doppler corrections on the fly).

The spectral line data set

• The continuum-subtracted spectral-line data set is IRC10216_spls.ms. Plot the lines

default plotms

vis	=	'IRC10216_spls.ms'
xaxis	=	'channel'
yaxis	=	'amp'
averagedata	=	True
avgtime	=	'1e8'
avgscan	=	True
coloraxis	=	'spw`

go

NRAO,

CASA: Clean

default clean

For illustration: image/clean channel 22 of the SiS line.

Don't type go yet					
threshold	=	'3.OmJy'			
gain	=	0.1			
niter	=	100000			
width	=	1			
start	=	T T			
nchan	=	1			
mode	=	'channel'			
spw	=	'1:22~22'			
imagename	=	'ch22'			
vis	=	'IRC10216_spls.ms	T		

•

CASA: Clean

. .

psfmode	=	'clark'
imagermode	=	'csclean'
interactive	=	True
npercycle	=	100
imsize	=	300
cell	=	'0.4arcsec'
stokes	=	'I'
weighting	=	'briggs'
robust	=	0.5

CASA: Clean

- Make a region.
- Double click inside the region (green outline turns white).
- Clean (click on the green circular arrow several times).

CASA: viewer

- Start the viewer (type viewer in CASA).
- Choose ch22.image.
- Load as 'raster image'.

CASA: viewer

Make a region off-source,

double click in the region

to get some statistics (in

the CASA terminal).

Viewer Display Panel _ 🗆 🗙 Display Panel Tools View Data 🗎 📐 🗟 🔍 🔍 🔍 **C**h $\mathbf{\Theta}$ R 씲 昷 띪 30 15" 17'00' 12000 Declinatio 45' 30' 15" 13°16'00" 45' 09^h48^m01^a 47^m59[°] 57[°] 56" 55° 54[°] J2000 Right Ascension

Close the viewer.

🗙 ch22.image

+0.00170912 Jy/beam Pixel: 192 298 0 0 09:47:56.242 +13.17.40.028 I -2.99091e+11 km/s (topo/radio velocity)

.*	Sto
	BrightnessU Jy/b
NO.	M
	3.006543e

Velocity okes I -2.99091e+11km/s Jnit BeamArea 45.3306 beam Rms 1ean 2.030842e-03 e-04

Frequency	Doppler	Frame
3.63073e+10	RADIO	TOPO
Flux	Sum	Npts
3.581542e-02	1.623533e+00	5400
Maximum	Minimum	Std dev
6.453225e-03	-7.231708e-03	2.008650e-03

The Image cubes

- The data files we have provided included two image cubes
 - IRCI0216_HC3N.image
 - IRCI0216_SiS.image
- Using the viewer, display the image cubes

CASA: viewer

- Start the viewer
- Choose one of the image cubes.
- Load as 'raster image'.
- Play the movie.

 Load the other image cube and play the movie.

CASA: viewer

- Display a channel with emission.
- Click on Spectral profile

Spectral Profile - IRC10216_SiS.image

36.3135

20

Top: frequency [GH \$ Left: Jy/beam

Rectangle Region Profile frequency [GHz]

36.3123

30

channel

LSRK

Make a region on the image to display the spectrum.

36.3148

10

000

Jy/beam)

🗟 候 🍪

36.316 0.06 ±

0.05 0.04

0.03 0.02 0.01 72e-18

-0.01

Bottom: channel

CASA: immoments

- Determine the channels with emission in the SiS image cube.
- Make moment maps using the task immoments default immoments
 - imagename = 'IRC10216_SiS.image'
 - moments = [0]
 - axis = 'spectral'
 - chans = $'12 \sim 40'$
 - outfile = 'IRC10216_SiS.mom0'
 - go
- Specify appropriate pixel ranges if necessary (through includepix and/or excludepix parameters).

CASA: viewer

- Start the viewer
- Choose the moment 0 image.
- Load as 'raster image'.
- Reload as 'contour map' to overlay contours.

