Jansky Very Large Array

Current and future capabilities

Gustaaf van Moorsel NRAO Community Days February 2013

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Location

- 27x25mVLA antennas reconfigurable on baselines 35m to 36km
- located in Southern New Mexico at 2100m altitude
- Construction from 1973-1980, upgrade 2003-2012 to Jansky VLA

Location

- 27x25mVLA antennas reconfigurable on baselines 35m to 36km ٠
- located in Southern New Mexico at 2100m altitude ٠
- Construction from 1973-1980, upgrade 2003-2012 to Jansky VLA ٠

AAS Splinter Session, Jan 12 2012

Spatial Resolution

- With reconfiguration of the antennas, the VLA can vary its spatial resolution by a factor of ~50 (depending on *largest* baseline/telescope separation)
- Reconfiguration every 4 months (modifications during commissioning)

Configuration	A	В	С	D						
B _{max} (km ¹)	36.4	11.1	3.4	1.03						
B _{min} (km ¹)	0.68	0.21	0.035 ⁵	0.035						
	Synthesized Beamwidth $\theta_{HPBW}(arcsec)^{1,2,3}$									
74 MHz (4 band)	24	80	260	850						
1.5 GHz (L)	1.3	4.3	14	46						
3.0 GHz (S) ⁶	0.65	2.1	7.0	23						
6.0 GHz (C)	0.33	1.0	3.5	12						
8.5 GHz (X) ⁷	0.23	0.73	2.5	8.1						
15 GHz (Ku) ⁶	0.13	0.42	1.4	4.6						
22 GHz (K)	0.089	0.28	0.95	3.1						
33 GHz (Ka)	0.059	0.19	0.63	2.1						
45 GHz (Q)	0.043	0.14	0.47	1.5						

Largest Angular Scale

- The shortest baseline sets the largest angular scale that an interferometer is sensitive to
- Compact configurations images have less spatial resolution but cover larger angular scales and increase surface brightness sensitivity

Configuration	Α	В	С	D	Fie					
B _{max} (km ¹)	36.4	11.1	3.4	1.03	(
B _{min} (km ¹)	0.68	0.21	0.035 ⁵	0.035	d					
	Largest Ar	argest Angular Scale θ _{LAS} (arcsec) ^{1,4}								
74 MHz (4 band)	800	2200	20000	20000	6					
1.5 GHz (L)	36	120	970	970	3					
3.0 GHz (S) ⁶	18	58	490	490	I					
6.0 GHz (C)	8.9	29	240	240	7					
8.5 GHz (X) ⁷	6.3	20	170	170	5					
15 GHz (Ku) ⁶	3.6	12	97	97	3					
22 GHz (K)	2.4	7.9	66	66	2					
33 GHz (Ka)	1.6	5.3	44	44	I					
45 GHz (Q)	1.2	3.9	32	32	I					

Field of view (depends on diameter of a single antenna) 608' 30' 15' 7.5' 5.3' 3' 2'

What is the Jansky Very Large Array?

- A major conversion of the Very Large Array (Expanded VLA Project)
- Partners: US, Canada (correlator), Mexico (additional funds)
- First light/fringe in 2010, full operation since early 2013
- 5-10 times better continuum sensitivity
- Accessibility of entire I-50 GHz frequency range (8 feeds)
- Up to 8 GHz bandwidth per observation and polarization
- High dynamic range imaging
- Spectral channels up to 16000 4x10⁶ channels in up to 64 independent subbands (equivalent to 64 independent correlators)
- Correlator supports up to 32 antennas
- Dynamical scheduling (based on scientific priority, weather conditions, scheduling efficiency, time critical observations)
- Pipeline-calibrated visibility data (plus reference images)
- New observation preparation software (OPT)
- New data reduction software (CASA)

Full Frequency Coverage with Outstanding Performance

• There are eight feeds, tightly packed around the secondary focus feed ring.

Band (GHz)		T _{sys} /ε (best weather)
1-2	L	60 80
2-4	S	55 70
4-8	С	45 60
8-12	X	40 50
12-18	Ku	50 60
18-26.5	K	70 80
26.5-40	Ka	90 130
40-50	Q	160 - 360

NRAC

Receivers

Wideband receivers I GHz @ L-band to I0 GHz @ Q-band (correlator can go up to 8 GHz), this implies

- Better sensitivity (cf.VLA max. bandwidth 50 MHz)
- Better image fidelity, higher dynamic range with a goal of 10⁶ (filling in gaps in the uv-coverage/multi-frequency synthesis; better RFI isolation)
- Determination of spectral indices in single observations
- Multi-line observations at identical weather conditions for accurate line ratios

Band	Range					
	(GHz)					
20 cm (L)	1.0-2.0					
13 cm (S)	2.0-4.0					
6 cm (C)	4.0-8.0					
3 cm (X)	8.0-12.0					
2 cm (Ku)	12.0-18.					
1.3 cm (K)	18.0-26.					
1 cm (Ka)	26.5-40.					
0.7 cm (Q)	40.0–50.					

VLA Sensitivity (rms in I Hour)

Jansky VLA-VLA Capabilities Comparison

The upgraded VLA's performance is vastly better than the VLA's:

Parameter	VLA	EVLA	Factor	Current	
Point Source Cont. Sensitivity (1 σ ,12hr.)	10 μJy	1 μJy	10	1 μJy	
Maximum BW in each polarization	0.1 GHz	8 GHz	80	8 GHz	
# of frequency channels at max. BW	16	16,384	1024	16,384	
Maximum number of freq. channels	512	4,194,304	8192	131,072	
Coarsest frequency resolution	50 MHz	2 MHz	25	2 MHz	
Finest frequency resolution	381 Hz	0.12 Hz	3180	15.3 Hz	
# of full-polarization spectral windows	2	64	32	64	
(Log) Frequency Coverage (1 – 50 GHz)	22%	100%	5	100%	

The 'WIDAR' Correlator

- The VLA's new correlator was built to NRAO's requirements by the DRAO correlator group, located at the HIA facility near Penticton, BC, Canada.
- This 'WIDAR' correlator was paid for by the Canadian government, as part of a cooperative agreement between the Canadian NRC and the U.S. NSF.
- Installation of WIDAR began January, 2010. It was turned on for astronomy in early March, 2010.
- This extraordinarily flexible machine is now fully installed at the VLA site, and is working magnificently.
- We are far from deploying all its capabilities this is a lengthy process, which is months to years away from completion.

WIDAR Correlator use cases

- Ka-band (Icm): 2xI GHz imaging (captures tens of important molecular lines) with 3 km/s spectral resolution (dual pol), Isec integration time
- L-band (21cm): full stokes continuum at 2 MHz resolution (using 8 subbands) plus sub km/s imaging on HI, OH, radio recombination lines (up to 56 additional subbands!), all simultaneously
- S-band (13cm): 31 Radio recombination lines at once with sub-km/s resolution; sensitivity increase by stacking

Multi-Line Imaging: Orion KL

Molecular gas in early main sequence galaxies

- Herschel has identified large samples of gravitationally lensed, very dusty, FIR luminous star forming galaxies, but optical redshifts are difficult to obtain due to obscuration
- Wide bandwidth of VLA has become a powerful tool to obtain redshifts, and molecular gas properties
- VLA has imaged the molecular gas in a set of lower luminosity star forming galaxies at z~2.5
- Large, rotating disks are seen, containing warm molecular gas
- They also detect thermal Free Free emission for the first time in distant galaxies, providing the best measure to date of star formation rates

VLA spectra and images of a star forming galaxy at z=2.5 (Thompson et al. 2012) 14

ASIAA Workshop on the Jansky Very Large Array

Current General Observing : 8-bit

- 8-bit is traditional sampling: offered since WIDAR came online in 2010
- 2 independently tunable basebands of 1 GHz each (cf. old VLA only 0.05GHz each) for a total of 2 GHz
- Each of these basebands can have up to 16 independent and flexibly tunable subbands
- Each subband has 64 (full pol), 128 (dual pol), or 256 (single pol) channels
- Current maximum: 16,384 channels * Npol
- Up to three sub-arrays

Current General Observing : 3-bit

- 3-bit samplers: very new; latest addition to the VLA (2012)
- Part of general observing since January 2013
- 4 independently tunable basebands of 2 GHz each for a total of 8 GHz
- Each of these basebands has 16 subbands
 - 128 MHz each (compare much more flexible 8-bit)
 - Contiguous (compare 8-bit: place subbands where you want)
- Each sub band has 64 (full), 128 (dual), or 256 (single) channels (like 8-bit)
- K, Ka, and Q-band only; no subarrays

										· .
24.18 GHz				25.2	GHz				26.22 GHz	2-122

Shared risk observing

- We've covered General Observing. If you want more, two possibilities:
- Shared Risk observing: own risk, but supported by OPT and scheduler
 - Faster correlator dump times (as short as 50ms)
 - 3-bit samplers at C, X, or Ku band
 - Low frequency observing 230 470 MHz
- Resident Shared Risk Observing: own risk, visit NRAO in Socorro to help out commissioning, not supported by OPT and scheduler
 - Faster correlator dump times (< 50ms)
 - > 3 subarrays
 - OTF interferometric mosaicking
 - Recirculation in correlator (i.e. get n times more channels by decreasing subband width by factor n)

Data Reduction

- VLA data reduction is possible in CASA and AIPS
- With higher volumes: CASA only
- Data volumes can be very large and parallelization of the software is currently underway
- CASA contains new wide-band, wide-field imaging algorithms
- On-the-fly Interferometry/Mosaicing
- Development of automatic RFI flagging
- A computing cluster will be available for users in Socorro
- Calibration pipeline is now operational
- Hardware recommendations are provided on our webpage for those who decide to upgrade their own computing equipment

Wideband Imaging

- Wide-band, wide-field imaging
- Multi-scale cleaning
- A-projection for wide-field imaging

Bhatnagar, Green, Rau, Golap, Rupen & Perley

AAS Splinter Session, Jan 12 2012

Next proposal deadline: IAugust 2013 www.nrao.edu

NRAO

IRC+10216

NRAOA Consuplication Decession free based 2012