Radio Continuum Emission from Classical Novae:

 eNova Project Early Results (and Surprises!)
Miriam Krauss (NRAO)

The eNova Team:
J. Sokoloski (Columbia); L. Chomiuk (NRAO, CfA); M. Rupen, N. Roy, A. Mioduszewski (NRAO); G. Hallinan
(National U. of Ireland, Galway); M. Bode (Liverpool John Moores U.); S. Eyres (U. of Central Lancashire);
G. Knapp (Princeton U.);T. O'Brien (U. of Manchester)

Radio emission from novae: Observational motivation

- Novae are nearby laboratories for accretion/ejection physics
- Long-lasting emission in radio; evolution is slower than at other frequencies
- Thermal bremsstrahlung simple to model - can derive physical parameters
- Ejected material optically thick at much lower densities
- Can be used to get mass estimates, addressing question of accreted vs. ejected mass

The eNova Project: A new era of observations

- Currently: EVLA monitoring of all new, nearby (<5 kpc) novae for each epoch (2.5 hours), get:
- improved sensitivity: $\sim 30 \mu \mathrm{Jy}$ at 5 GHz for 500 MHz BW
- broad frequency coverage: I - 40 GHz (L, C, X, K/Ka/Q)
- fast response: ~week
- so far, two targets: V407 Cyg and VI723 Aql
- Upcoming: snapshot images of 23 recent (<3 yr) novae; deeper images of brighter subset (A-config, summer 20 II)
- morphology and spectral properties of radio remnants
- may double the number of published radio images (7)!
- will tie to interpretation of light curves
- EVLA + eMERLIN + VLBA

Comparison: previous radio light curves

Comparison: previous radio light curves

六

Ca 5 A
Early Science with the
EVLA:AAS, Jan. I2, 201 I

The eNova Project: V407 Cyg

- $2 x 128 \mathrm{MHz}$ subbands, $\sim 0.1 \mathrm{mJy}$ sensitivity
- 3-7 day cadence for 2 mo., then ~ 14 days for ~ 4 mo.
- Symbiotic system with Mira secondary - dense CBM
- First nova with detected gammaray emission (Abdo et al. 2010)
- Early Merlin observations show resolved shell

The Fermi-LAT Collaboration, 2010

The eNova Project: V407 Cyg

- 2 x 28 MHz subbands, $\sim 0.1 \mathrm{mJy}$ sensitivity
- 3-7 day cadence for 2 mo., then ~ 14 days for ~ 4 mo.
- Symbiotic system with Mira secondary - dense CBM
- First nova with detected gammaray emission (Abdo et al. 2010)
- Early Merlin observations show resolved shell

Early Science with the
EVLA:AAS, Jan. I2, 20 II

The eNova Project: V407 Cyg

- $2 x$ I 28 MHz subbands, $\sim 0.1 \mathrm{mJy}$ sensitivity
- 3-7 day cadence for 2 mo., then ~ 14 days for ~ 4 mo.
- Symbiotic system with Mira secondary - dense CBM
- First nova with detected gammaray emission (Abdo et al. 2010)
- Early Merlin observations show resolved shell

Early Science with the
EVLA:AAS, Jan. I2, 20 II

The eNova Project: V407 Cyg modeling

- "Classic" spherical-shell model does not work
- Updated model - layered spherical shells: nova ejecta, shock region, Mira wind
- Thermal bremsstrahlung, emission and absorption
- Physical constraints: X-ray fitting (Swift data), optical lines, distance estimate
- Spectral index: 0.8 at earliest epochs; ~0.I at latest

Cas 31

The eNova Project: V407 Cyg modeling

Early Science with the
EVLA:AAS, Jan. I2, 20II
Asymmetry, clumpy material?

The eNova Project: VI723 AqI

- 2 GHz bandwidth, $\sim 30 \mu \mathrm{Jy}$ sensitivity; L, C, X, K, Ka-band
- Highly extincted; source not previously known
- Variation of spectral index (~1.5 to 0.5 to I.2), but not the expected $\alpha \sim 2$
- Classic model still doesn't work!
- Continued observations: how will radio source develop?
$\left.\sim^{2}\right)^{2}$
Early Science w
EVLA:AAS, Jan.

The eNova Project: Conclusions \& future prospects

- First complete, rapid-response, multifrequency radio monitoring of Galactic novae
- Already, data are challenging classic models
- Imaging will be very important for current \& future interpretation
- Will be the highest-quality radio data ever observed
- An exciting time for theory and interpretation!

