

Capabilities of the Expanded Very Large Array for Astronomical Surveys

Steven T. Myers

& the EVLA construction and commissioning team

*National Radio Astronomy Observatory, Socorro, NM

357.03 Myers/EVLA – AAS Washington, DC – 06 Jan 2010

The EVLA and Surveys

- The Expanded Very Large Array will provide new and powerful capabilities for radio astronomical surveys as well as multiwavelength follow-up observations of other surveys. Available starting 1 March 2010 with increasing capabilities.
- For more on the EVLA see talks/posters:
 - Rick Perley (387.03 talk Thursday)
 - Aeree Chung (347.01 talk this morning Wednesday)
 - Urvashi Rau (357.01 talk this morning Wednesday)
 - Others earlier in meeting (Claussen, Momjian, Ott, Rupen, Wrobel)

The Expanded Very Large Array

... is a major upgrade of the Very Large Array

- improves all capabilities of the VLA -- except spatial resolution -- by at least an order of magnitude.
 - Full frequency coverage from 1 to 50 GHz (<1 GHz in bands)
 - Up to 8 GHz instantaneous bandwidth
 - New digital correlator with unprecedented capabilities
 - ~3 µJy (1- σ , 1-Hr) point-source continuum sensitivity at most bands.
 - ~1 mJy (1- σ , 1 km/sec, 1 Hr) line sensitivity at most bands.
- Counting all sources, a \$90M project.
- The Project began in 2001, and will be completed in 2012 – on time, on spec, on budget.
 - EVLA science observing (limited modes) starts March 2010!

Overall EVLA Performance Goals

• Orders of magnitude performance improvement!

Parameter	VLA	EVLA	Factor
Continuum Sensitivity (1-σ, 1 hr.)	30 µJy	3 μЈу	10
Maximum BW in each polarization	0.1 GHz	8 GHz	80
# of frequency channels at max. BW	16	16,384	1024
Maximum number of freq. channels	512	4,194,30 4	8192
Coarsest frequency resolution	50 MHz	2 MHz	25
Finest frequency resolution	381 Hz	0.12 Hz	3180
<pre># of full-polarization spectral windows</pre>	2	64	32
(Log) Frequency Coverage (1 – 50 GHz)	22%	100%	5

NRAC

The EVLA for Survey Science

- Spectral Coverage
 - 21cm HI line to z=0.4 (1.4-1GHz)
 - key molecular transitions, masers
 - radio recombination lines
 - redshifted CO
- Continuum Sensitivity
 - Synchrotron, free-free, dust
 - Polarimetry (magnetic fields)
- The Time Domain
 - 100ms integrations, dynamic spectra
 - Pulsar gating (future)

Wide-band spectral coverage Wide field (e.g. with mosaicing) High sensitivity Full Polarization <u>Use for Surveys and Follow-up</u> <u>Available staring March 1 2010!</u>

Early EVLA Testing Results

- A 12-antenna sub-array has been established to test correlator capabilities from the WIDAR-0 prototype.
- This test configuration provides:
 - 8192 channels
 - Full polarization
 - Up to eight adjacent spectral windows
- Test observations in 1—2 and 18 26 GHz bands are shown on subsequent slides.
 - Data processing in both AIPS and CASA possible

3C147 Deep Field @ 1440 MHz

- 12 antennas, 110 MHz bandwidth, 6 hours integration
 - Fidelity ~ 400,000:1
 - Peak/rms ~ 850,000:1
- artifacts are due to structure in the antenna primary beams
 - Advanced imaging software (e.g. Urvashi Rau talk)
- This is the highest fidelity image ever made with the VLA – using only a fraction of the capability!

NRAC

The Spectrum of Orion-KL – 3 GHz Wide

- Three short (90m,90m,30m) observations of the hot core of Orion, each 1024 MHz wide, ~1.5 km/sec velocity and 2.5" spatial resolution
- From NH₃ are the 8 lowest meta-stable inversion transitions (J,K) = (1,1) to (8.8), two meta-stable (9,8) and (10,9) lines, the (6,6) line from $^{15}NH_3$ isotopologue, and the 4(1,4)-4(0,4) line from singly deuterated ammonia, NH₂D.
- Two E/A doublets of methyl formate: CH₃CHO
- OCS 2-1
- Three unidentified lines
- Ten strong methanol maser lines from J_{k=2} – J_{k=1} E-type series (J=2 – 11).
- Clear spatial segregation of oxygenated vs. nitrogenated molecules.

357.03 Myers/EVLA – AAS Washington, DC – 06 Jan 2010

Spectra from 96x96x24012 image cube

357.03 Myers/EVLA – AAS Washington, DC – 06 Jan 2010

Orion: Expanding the Frequency Scale

- Left Side: The lowest 1.0 GHz, showing some of the identifications.
- Right Side: A close-up of the two lowest meta-stable transitions, showing the 5 main groups of hyperfine structure which are blended in the Orion-KL spectrum.

357.03 Myers/EVLA - AAS Washington, DC - 06 Jan 2010

The Future: EVLA to SKA

- The EVLA will be "complete" in 2012
 - Small enhancements planned for 2010-2019 decade such as compact E-configuration, improved receivers below below 1 GHz, WVR for high-frequency observing.
 - Synergy with Allen Telescope Array (ATA)
- Beyond EVLA the SKA-high and NAA
 - "North America Array" (NAA) submitted to Decadal Survey as a Design, Development, and Prototying project (Myers et al.).
 - Part of the international "Square Kilometre Array" (SKA) program as the high-frequency counterpart to the midfrequency (Cordes et al.) and low-frequency (Backer et al.) SKA components.

NAA High-Level "Design" and Goals

- NAA concept
 - 1-50 GHz capability
 - "core" 5-45 GHz, two 3:1 bands (5-15, 15-45 GHz)
 - At least 10 x EVLA sensitivity
 - 5 x EVLA on baselines < 500km and 500-3800+ km
 - Grow from EVLA + VLBA + GBT + ATA?

Science Goals

- Drivers: megamasers (dark energy, BH masses), weighing dark matter (lensing), imaging galaxies in early Universe (lines, continuum), protoplanetary disks, super-star clusters and supernovae, SNe and GRB, obscured pulsars and motions, Local Group motions (astrometry)
- For more information: http://www.nrao.edu/nio/naa/

For more information...

- AAS upcoming talks/posters (this meeting)
 - Rick Perley (387.03 talk Thursday)
 - Aeree Chung (347.01), Urvashi Rau (357.01) talks this morning!
- Project Websites
 - Expanded Very Large Array (EVLA) http://www.aoc.nrao.edu/evla/astro/
 - North America Array (NAA) http://www.nrao.edu/nio/naa/
- Astro2010 Decadal Submissions
 - NRAO Decade2010 http://www.nrao.edu/A2010/
 - "Great Surveys of the Universe" S.T. Myers http://arxiv.org/abs/0904.2593
- SKA Info
 - http://www.skatelescope.org
 - particularly see the "Science Book" by Carilli & Rawlings (New Astronomy Reviews, Vol.48, Elsevier, December 2004)