Disks@EVLA

Grain Growth and Substructure in Protoplanetary Disks

David J.Wilner Harvard-Smithsonian Center for Astrophysics

PI: C. Chandler (NRAO)

S. Corder (NRAO) A. Deller (NRAO) S. Andrews (CfA) D. Wilner (CfA) J. Carpenter (Caltech) A. Isella (Caltech)N. Calvet (Michigan)J. Lazio (JPL)L. Perez (Caltech)C. Dullemond (MPIA)L. Testi (ESO)A. Sargent (Caltech)T. Henning (MPIA)L. Ricci (ESO)L. Mundy (Maryland)H. Linz (MPIA)S. Storm (Maryland)J. Greaves (St. Andrews)

217th AAS Meeting, Seattle, January 2011

Т

From Dust to Planets

Protoplanetary Disk Dust Emission

NRAC

- mm/cm wavelengths
 - avoid high opacities
 mass tracer
 - sensitive to cold dust including mid-plane
 - sensitive to large dust grain growth
 - contrast with star planet-forming region
 - subarcsec imaging with high sensitivity EVLA!
 - sometimes ionized gas

Spectral Signatures of Growth

EVLA Observations

- photometry survey
 - D/DnC/C arrays, ongoing
 - 60+ nearby disks at 7/9/13/50 mm
 - spectral indices for grain growth

C. Dominik

- statistics, e.g. star properties, environment
- image subsets at higher resolution, to 50 mas = few AU
 - C/CnB/B/BnA/A arrays, coming soon
 - locate large grains
 - surface density structure
 - evidence for disk-planet interactions

NASA/JPL T. Pyle

Some Early Analysis

- compare with Birnstiel et al. 2010 models
 - self-consistent calculation of grain size distribution, coagulation/fragmentation and irradiated disk structure
 - predict mm/cm fluxes and spectral index β

Table 1. Parameters of the model grid.

Parameter	Values				
Mdisk	$[M_{\odot}]$	5×10^{-3}	1×10^{-2}	5×10^{-2}	1×10^{-1}
$\alpha_{\rm t}$		5×10^{-4}	1×10^{-3}	5×10^{-3}	_
$u_{\rm f}$	[m/s]	1	3	10	-
$f_{\rm vac}$	[% vol.]	10	30	50	_
ξ		1.0	1.5	1.8	-

Notes. M_{disk} is the total disk mass, α_t is the turbulence parameter, u_f is the critical collision velocity, f_{vac} is the grain volume fraction of vacuum, and ξ is the index of the distribution of fragments. The parameters of the fiducial model are highlighted in bold face.

- β 's agree, mm fluxes don't...
- growth to larger sizes?
 different initial conditions?

Resolved Disk Colors and Structure

surface densities and initial conditions?

disk-planet interactions?

Disks@EVLA: Summary

- grain growth and substructure in protoplanetary disks
- last observable link in chain from ISM to planets
- photometry of 60+ disks at 7/9/13/50 mm
 - spectral indices reveal large grains
 - reduction and modeling underway
- imaging of subsets, to 50 mas = few AU
 - expect resolved mm/cm colors
 - surface densities, disk-planet features
- thanks to EVLA commissioning team!

9