Grain Growth and Substructure in Protoplanetary Disks

David J. Wilner
Harvard-Smithsonian Center for Astrophysics

PI: C. Chandler (NRAO)

S. Corder (NRAO)
A. Deller (NRAO)
S. Andrews (CfA)
D. Wilner (CfA)
J. Carpenter (Caltech)
A. Isella (Caltech)
L. Perez (Caltech)
A. Sargent (Caltech)
L. Mundy (Maryland)
S. Storm (Maryland)
N. Calvet (Michigan)
J. Lazio (JPL)
C. Dullemond (MPIA)
L. Testi (ESO)
T. Henning (MPIA)
L. Ricci (ESO)
H. Linz (MPIA)
J. Greaves (St. Andrews)
From Dust to Planets

T Tauri & HAe stars
age 1-10 Myr
100’s at ~140 pc

Planetesimal formation

Collisional agglomoration

???
(collective effects)

Gravity-assisted growth

Gas capture

Planet formation

1 μm 1mm 1m 1km 1000km

NASA/JPL T. Pyle
Protoplanetary Disk Dust Emission

- mm/cm wavelengths
 - avoid high opacities mass tracer
 - sensitive to cold dust including mid-plane
 - sensitive to large dust grain growth
 - contrast with star planet-forming region
 - subarcsec imaging with high sensitivity EVLA!
 - sometimes ionized gas
Spectral Signatures of Growth

- mm/cm emissivity $\kappa \sim \lambda^{-\beta}$
- β diagnostic of max size
- if optically thin, R-J
 $F \sim \kappa \Sigma T \sim \lambda^{-(\beta + 2)}$
EVLA Observations

• photometry survey
 – D/DnC/C arrays, ongoing
 – 60+ nearby disks at 7/9/13/50 mm
 – spectral indices for grain growth
 – statistics, e.g. star properties, environment

• image subsets at higher resolution, to 50 mas = few AU
 – C/CnB/B/BnA/A arrays, coming soon
 – locate large grains
 – surface density structure
 – evidence for disk-planet interactions
Example Taurus Images (Preliminary)

\[\lambda = 9 \text{ mm (30.5 and 37.5 GHz)} \]
\[\theta \sim 0.7 \text{ arcsec} = 100 \text{ AU} \]
spectral indices
Some Early Analysis

• compare with Birnstiel et al. 2010 models
 – self-consistent calculation of grain size distribution,
 coagulation/fragmentation and irradiated disk structure
 – predict mm/cm fluxes and spectral index β

$\alpha_{1-7\text{mm}} = 2 + \beta$

Table 1. Parameters of the model grid.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{disk}</td>
<td>5×10^{-3}, 1×10^{-2}, 5×10^{-2}, 1×10^{-1}</td>
</tr>
<tr>
<td>α_t</td>
<td>5×10^{-4}, 1×10^{-3}, 5×10^{-3}, $-$</td>
</tr>
<tr>
<td>u_t</td>
<td>1, 3, 10, $-$</td>
</tr>
<tr>
<td>f_{vac}</td>
<td>10, 30, 50, $-$</td>
</tr>
<tr>
<td>ξ</td>
<td>1.0, 1.5, 1.8, $-$</td>
</tr>
</tbody>
</table>

Notes. M_{disk} is the total disk mass, α_t is the turbulence parameter, u_t is the critical collision velocity, f_{vac} is the grain volume fraction of vacuum, and ξ is the index of the distribution of fragments. The parameters of the fiducial model are highlighted in bold face.
Resolved Disk Colors and Structure

efficient grain growth at highest densities?

disk-planet interactions?

surface densities and initial conditions?

Kokubo and Ida 2002

Hughes et al. 2007

217th AAS Meeting, Seattle, January 2011
Disks@EVLA: Summary

- grain growth and substructure in protoplanetary disks
- last observable link in chain from ISM to planets

- photometry of 60+ disks at 7/9/13/50 mm
 - spectral indices reveal large grains
 - reduction and modeling underway

- imaging of subsets, to 50 mas = few AU
 - expect resolved mm/cm colors
 - surface densities, disk-planet features

- thanks to EVLA commissioning team!