CASA Details

Jeff Kern CASA Team Lead

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

CASA 3.4

- Current release is CASA 3.3
- CASA 3.4 planned release is May 1, 2012
 - "Stable" updates are available from the CASA download page
 - http://casa.nrao.edu/casa_obtaining.shtml
- CASA 3.5 (around)

Virtual Model Data

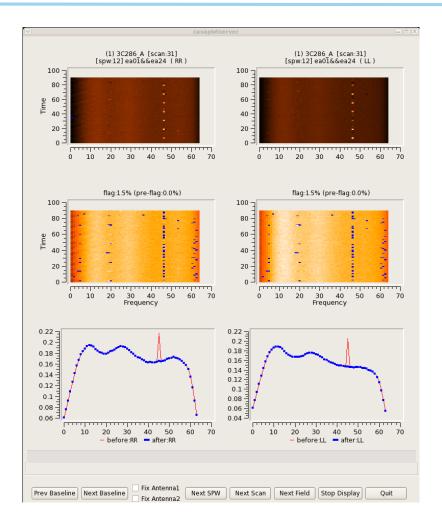
- Currently there are two scratch columns in the MS
 - MODEL_DATA
 - CORRECTED_DATA
- With 3.4 the Model Data column can be virtual
 - Reduced IO and Disk Consuption
 - Should be transparent
- Changes where time is spent in the

New Flagging System

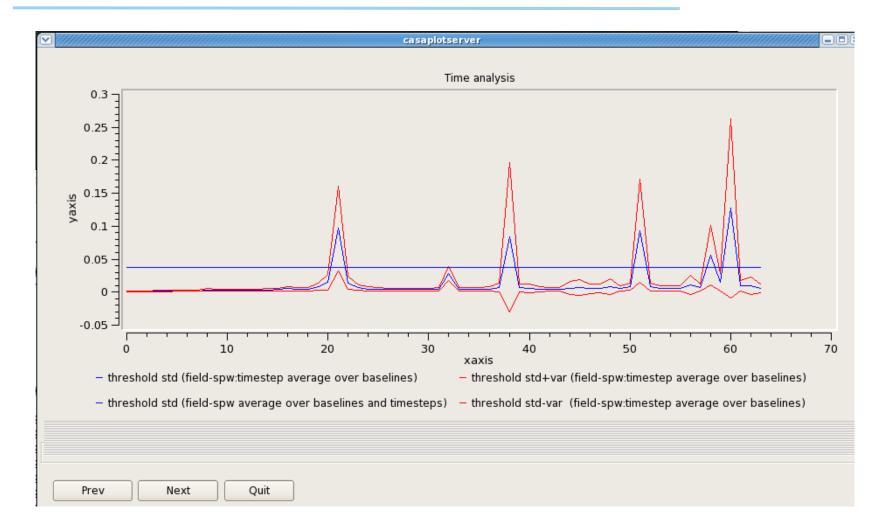
- New Flagging infrastructure introduced in 3.4
 - Replaces 'flagdata', 'flagdata2', 'flagcmd', 'testautoflag'
 - Plan to remove deprecated tasks in 3.5
- Underlying code re-written for
 - Performance Optimization
 - Asynchronous IO, Parallelization, pre-selection of data
 - Batch Modes (Many command in a single pass)
 - tflagdata: Single commands and batch commands from input text file
 - tflagcmd: Batch commands with the FLAG_CMD subtable
 - Similar to "flagemd"

New Flagging System

- New and Improved modes:
 - Automatic Flagging
 - "rflag": based on E. Greisen's algorithm in AIPS
 - "tfcrop": previously available in 'testautoflag'
 - Flag Extension
 - along time, frequency, polarization, baselines
 - Shadowing
 - Support for physically present antennas not listed in MS


New Flagging System

- Summary and Display
 - Integrated display option for single or batch modes to monitor flagging if desired.
 - Particularly useful for autoflagging
 - Summary reports
 - Generated by any mode either displayed or returned as python dictionaries.


Interactive Display

Flagging Report

Flagging Output

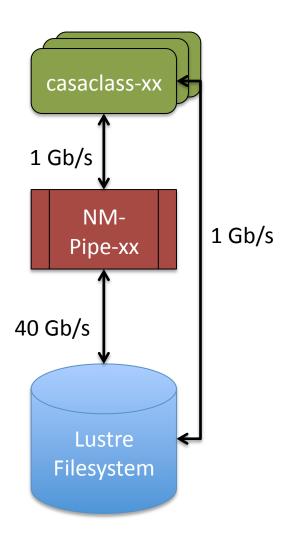
FlagDataHandler::nextBuffer FlagDataHandler::nextBuffer	Chunk = 28, Observation = 0, Array = 0, Scan = 31, Field = 1 (3C286_A), Spw = 11,			
FlagDataHandler::nextBuffer	Chunk = 28, Observation = 0, Array = 0, Scan = 31, Field = 1 (3C286_A), Spw = 11,			
Display::getChunkInfo	FlagAgentDisplay::getChunkInfo Field : 1 , 3C286_A Spw : 11 Scan : 31 : 31			
Manual_0::chunkSummary	=> Data flagged in this chunk: 16.6667%			
Quack_2::chunkSummary	=> Data flagged in this chunk: 6.66667%			
FlagDataHandler::nextBuffer				
FlagDataHandler::nextBuffer	Chunk = 29, Observation = 0, Array = 0, Scan = 31, Field = 1 (3C286_A), Spw = 12,			
Display::getChunkInfo	FlagAgentDisplay::getChunkInfo Field : 1 , 3C286_A Spw : 12 Scan : 31 : 31			
Manual_0::chunkSummary	=> Data flagged in this chunk: 16.6667%			
Quack_2::chunkSummary	=> Data flagged in this chunk: 6.66667%			
FlagDataHandler::nextBuffer				
FlagDataHandler::nextBuffer	Chunk = 30, Observation = 0, Array = 0, Scan = 31, Field = 1 (3C286_A), Spw = 13,			
Display::getChunkInfo	FlagAgentDisplay::getChunkInfo Field : 1 , 3C286_A Spw : 13 Scan : 31 : 31			
Manual_0::chunkSummary	=> Data flagged in this chunk: 16.6667%			
Quack_2::chunkSummary	=> Data flagged in this chunk: 6.66667%			
FlagDataHandler::nextBuffer				
FlagDataHandler::nextBuffer	Chunk = 31, Observation = 0, Array = 0, Scan = 31, Field = 1 (3C286_A), Spw = 14,			
Display::getChunkInfo	FlagAgentDisplay::getChunkInfo Field : 1 , 3C286_A Spw : 14 Scan : 31 : 31			
Manual_0::chunkSummary	=> Data flagged in this chunk: 16.6667%			
Quack_2::chunkSummary	=> Data flagged in this chunk: 6.66667%			
FlagDataHandler::nextBuffer				
FlagDataHandler::nextBuffer	Chunk = 32, Observation = 0, Array = 0, Scan = 31, Field = 1 (3C286_A), Spw = 15,			
Display::getChunkInfo	FlagAgentDisplay::getChunkInfo Field : 1 , 3C286_A Spw : 15 Scan : 31 : 31			
Manual_0::chunkSummary	=> Data flagged in this chunk: 16.6667%			
Quack_2::chunkSummary	=> Data flagged in this chunk: 6.66667%			
FlagDataHandler::nextChunk				
Manual_0::msSummary	=> Total data flagged in MS: 16.6667%			
Clip_1_RR::msSummary	=> Total data flagged in MS: 0.000977472%			
Clip_1_RL::msSummary	=> Total data flagged in MS: 0.000727421%			
Clip_1_LR::msSummary	=> Total data flagged in MS: 0.000591029%			
Clip_1_LL::msSummary	=> Total data flagged in MS: 0.000886544%			
Quack_2::msSummary	=> Total data flagged in MS: 6.14525%			
TestFlagger::run	=> Writing flags to the MS			

Calibration Table Refactor

- New Calibration tables come in 3.4
 - Display moves to plotMS
 - Improved interpolation (Freq. Dependent)
 - Can be applied to different MS
- Not backwards compatible
 - We will supply a task to convert old tables to new format

CASA Performance

- CASA performance as experienced by a user is determined by three factors:
 - File I/O
 - Available memory
 - Processor speed



Workshop Configuration

- •Hex Core Intel Xeon
- •8 GB RAM

- Dual Hex Core Intel Xeon
- •24 GB RAM

The processing performance problem

• Many tasks in CASA require traversing the entire data set and are data IO limited.

	Peak Data Rate	OS Realized Data Rate	Time for 500 GB file
SATA Disk	115 MB/s	60 MB/s	2h 22 m
Raid	200-500 MB/s	375 MB/s	22 m
Lustre (10 GB)	7+ GB/s	700 MB/s	12 m

 Even imaging [in the simplest case] is IO limited, requiring about 65 MB/s per core to prevent the CPU from incurring wait states.

Parallelization

- Note that this week, nearly all of the processing has been serialized (one core).
- Parallel CASA is coming
 - Already in the testing stages
 - Will make more efficient use of the available cores on a system.
 - Higher demand on memory
 - Will not help with the IO issues

Conclusion

- As the capabilities of the EVLA continue to grow, so will the size of the data sets.
- Optimizing CASA's performance is not simply a matter of buying the fastest processor, or most memory.
- The CASA team is working to allow optimum performance on workstations as well as clusters.

https://science.nrao.edu/facilities/evla/data-processing/hardware-recommendations

