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Why new algorithms?
● Instantaneous wide-band capability of the EVLA is a the single 

dominant parameter that enables new scientific capabilities
● Instantaneous sensitivity improvements by

● Better imaging performance due to improved uv-coverage

● More instantaneous information about the emission

– Spectral Index, RM, non-monochromatic polarization,...

● Hardware that allows new possibilities 

● “...my scientific inquiry was limited by instrument capability...” or “...I 
have this scientific question that needs the EVLA...”

● Enjoy :-)...

BW
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However...
● Know thy needs

● As always, new algorithms have limits of applicability, limits of new science they 
enable

● Have associated costs: higher computing, higher i/o

– Translates to longer run-time, grief, length of PhD time-scale,...

● Technical solution

● Have as wide a range of tools available in a flexible framework

● In using software packages slightly beyond the “tasking level only”, it is possible 
to more creatively combine software tools/techniques to enable the capabilities 
you need and keep the complexity in control

– MakeMyTask in casapy can be very useful
● At personal as well as at a community-contributions level

● Moral: Don't use things blindly (no silver bullet)

● Know what you need 
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Plan
● What do we mean by wide-field?

● Projection algorithms to correct for various wide-field effects

– Relation with minor cycle algorithms

● Algorithms “unification scheme” :-)

– Similarity between various wide-field algorithms

● Algorithms

– For W-term correction
● W-Projection,  Multi facet Imaging  

– For PB corrections
● A-Projection: Low and high frequency

– AW-Projection at low frequency bands

● Connection with Mosaicking:

– Generalization of single pointing 
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What do we call Wide-field? 
● Imaging that requires invoking any of the following:

– Corrections for non co-planar baseline effects
● Errors due to planar geometry assumptions > Thermal noise (L/S/C-bands)

– Corrections for the rotational asymmetry of the PB
● Imaging beyond 50% point, mosaicking

– Corrections for the frequency or polarization dependent effects
● PB, ionosphere/atmosphere

● Noise limited imaging at “low” bands (L, S and probably C Band)

– Because of the radio brightness distribution

● Noise limited imaging of structure comparable to the PB beam-width

● Mosaicking

– By definition, imaging on scales larger than the PB beam-width 

IContinuum=∫ PB  [ I o/o
 ]d dt=∫ I o/o

 pb  ,t 
d  dt
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Why wide-field?
● Primarily due to improved continuum sensitivity

● E.g. a 1% PSF side lobe due to a source away from the center is now 
significantly above continuum thermal noise limit

– This is a largely independent of the total integration time

●  Due to large bandwidth, EVLA is sensitive father out in the FoV

● E.g. @L-Band, PB gain ~1 deg. away can be up to 10%

– In the EVLA sensitivity pattern, VLA sensitivity is achieved at the location of 
VLA-null! 

– No null in the EVLA sensitivity pattern 



S. Bhatnagar: Wide-field Imaging,  Data Reduction Workshop, Feb. 2012, Socorro 7/33

T and 

50, 25, 15, 10, 6%

Wide-field Issues
● For the same integration time, EVLA is sensitive to emission farther 

out

● Error at the center of the image due to a source at a distance R

– R = 1o, S(R)=1Jy, 

 S=S R×PB R ×PSF R

 S=1mJy−100  Jy

[Bhatnagar, Rau,  Green & Rupen, 2011, ApJL, 739, L20] 
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Wide-field Issues
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Effects of the W-Term
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Non co-planar baseline: The W-term

● 2D FT approximation of the Measurement Equation breaks down

●

● We measure:

● We interpret it as:

● We should interpret E
1
 as     [E

1
' x Fresnel Propagator]    



B
max

≤  f
2

 f =Angular distance from the phase center

V 12
o
=〈 E1

'
u , v , w≠0 E2

∗
0,0,0〉

V 12=〈 E1u , v , w=0 E2
∗0,0,0〉
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PB Effects
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PB Effects: Rotation asymmetry
● Only average quantities available in the image domain

● Asymmetric PB rotation leads to time and direction dependent gains

 I R
=∑

[ PSF −avgPSF ]∗[  PB −avgPB  I o ]
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PB Effects: Error Propagation

  

 PB   PSF 

E.g. 5x10-3 E.g. 2x10-2

 I R
=∑


 PSF ∗[ PB I o

]
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Frequency dependence of the PB
● Assume linear scaling with the frequency

● Frequency- and direction-dependent gains

0.1

0.001

20 40 60
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Effect antenna pointing errors
● Typical EVLA antenna pointing errors 10-15 arcsec (w/o reference 

pointing)

● Can limit imaging at low bands because of stronger, more complex 
sky emission at low frequencies (LSC-bands)

● Flux at half-power point maximally contributes to increased noise floor

● Does limit imaging at high frequencies due to smaller PB

● Solution: Reference pointing every ~30 min. (due to time dependence)

● It's a time and direction dependent effects, but antenna based

● New possibilities: Pointing SelfCal (EVLA Memo #84, 2004)

– Possible due wide-band capability of the EVLA
● Why?  Better time utilization,  allows pointing selfcal and related improvements
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Algorithms: CS Clean recap 
● Compute residuals using the original data

● Needs Gridding and de-Gridding during major-cycle iterations

● Most commonly used algorithm

● Every major cycle access the entire data base

● Significant increase in I/O and computing load

● Assumes, co-planar, time- and freq-independent Measurement 
Equation

● Cannot account for wide-field wide-band and time variability issues

Dirty Image/Res. Image

Model Image

Data/Res. data

Model Data
FFT + de-Gridding

Gridding+iFFT

Obs.Data-Model data

Major Cycle Minor Cycle
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Deconvolution as ChiSq Minimization
●

● Non-linear solver, to solve for the Model Image

● Compute residuals:          VObs – AIM     (data domain)

                                       Id – BIM       (image domain)

● Make Residual Image Ires

 

● Find update direction:  Steepest Descent Algorithm

● Update model: 

● Since Major Cycle does model subtraction without averaging, variable terms can 
be included in that step

VM
=A IM AN V ij=deGrid ij FT  I 

I i
M=T  I I−1

M  for our discussions thisis=Ii−1
M ∗Ii

c

M
ajor C

ycle
(alw

ays expensive)

I c=max −2[I Res
]

∂
2

∂ Param


M
inor C

ycle
(can be expensive)
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Algorithms “unification scheme”
● Incorporates direction dependent effects as part of the gridding 

function

● ME:  

● Construct D, such that 

● Compute residuals (major cycle): 

● W- and A-Projection construct D differently

● A-Projection has additional normalization issues:

– Flat-noise vs. flat-sky normalization

● Mosaicking: (more in K. Golap's talk in Thursday Lecture Series)

– The Fourier transform shift theorem   

V ij= Aij I
o
N ij

Dij
TA ij
Dij
TD ij

≈1

Dij for forward andDij
T for reverse transform

IMosaic=∑k
I l o−lk 

Use D ije
 [ lo−l k . uij ] where Dij  can be Aij ,W ,or Aij∗W

[https://safe.nrao.edu/wiki/pub/Software/Algorithms/WebHome/Mosaicking_aoc.pdf]
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Projection algorithms
● Direction-dependent (“image plane”) effects as convolutional terms 

in the visibility domain

● ME entirely in the visibility domain:

●

● Generalization of the direction-independent ME

– Replace functions by complex numbers

– Replace convolution ('*') by complex product

V ij
O

= Aij I
M

= M ijFI
M

= M ij [V
M ]

V pp
O = M pp∗V pp

M  M p p2q∗V pq
M  M q p2q∗V qp

M  M p2q p2q∗V qq
M

[
V pp

o

V pq
o

V qp
o

V qq
o ] = [

M11 M12 M13 M 14

M21 M 22 M 23 M 24

M31 M 32 M 33 M 34

M 41 M 42 M 43 M 44
]∗[

V pp
M

V pq
M

V qp
M

V qq
M ]

● Diagonal: “pure” poln. products
● Off-diagonal: Include poln. leakage 

M ij=gig j
∗

M pq=J p ,i∗J q , j
∗



S. Bhatnagar: Wide-field Imaging,  Data Reduction Workshop, Feb. 2012, Socorro 20/33

Algorithms “unification scheme”
● “Single polarization” case: Single element of the Mueller Matrix

● Imaging 

● Prediction (de-gridding):

● CF can be A-term, W-term, AW-term, wide- or narrow-band

V Grid=CF∗V obs

I '=FFT [V Grid ]

V Grid
=FFT−1

[ IM
'

]

VM=CFT∗V Grid
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W-Projection
● W-Projection:                                   (CASA Imager: ftmacine=”wproject”)

                

● Potentially fully corrects for the effects of the W-term

● In practice, D is computed at a finite w-resolution, with interpolation in between

● gridmode='widefield';   wprojplanes=N;  facets=M

● D is non-hermitian

– Post deconvolution correction is not possible

– Same as: “corrections for antenna based phase

errors cannot be corrected for post-deconvolution”  

D=FT [ e2  w−1]

[Cornwell, Golap & Bhatnagar, 2008]
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W-Projection + Multi-faceting
● Multi-facet imaging                                   (CASA Imager: facets > 1)

                

 

● Split the sky into multiple, smaller tangent-plane images

● A linear approximation of this image-plane operation is possible in 
the visibility plane:

– Advantage: leads to a single combined image in the minor cycle

● Combination of W-Projection and Multi-facet imaging possible:

– Reduces the no. of w-planes and number of facets

I C l ∣det C ∣−1V C−1T

u
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A-Projection
● A-Projection:                                                     

– Function of time, frequency and polarization

● Since image is averaged over time and frequency, time- and 
frequency-dependence cannot be corrected post-deconvolution

– Same issue as non Hermitian nature of antenna based phase, W-term

● Effective PB is time- and polarization-independent

D=Auto-correlation of Aperture illumination function

[Bhatnagar, Cornwell, Golap & Uson, 2008]
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A-Projection: Stokes-I Before

Effective PB is time-variant
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A-Projection: Stokes-I After

Effective PB is time-invariant
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A-Projection: Stokes-V Before

Effective PB is polarization-variant
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A-Projection: Stokes-V After

Effective PB is polarization-invariant
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Imaging at high frequencies
● Definition: Frequency at which the array is co-planar for the required 

FoV

● To the first order, aperture illumination may linearly scale with 
frequency (or at least with in a certain range in frequency)

● Wavelength much smaller than the physical reflecting structures

● Geometrical ray-tracing models might be sufficient

● Can be computed once per SPW, rotated in time, and scale in 
frequency during imaging

● Significantly reduces memory foot print, at the cost of computing

● Can be computed efficiently on GPUs
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Imaging at low frequencies
● Definition: Frequency at which the array is non co-planar for the 

required FoV

● PB variations with time
● Even D-array is non
 co-planar

● BW ~400 MHz

● Need: 
  Wide-band AW-Projection
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Wide-band A-Projection
● PB gains vary with 

– Time:          Rotation with PA

– Frequency:  Mostly optics

– Direction:    Rotationally asymmetric PB, non-uniform frequency dependence 

D / 

+

Frequency along the  animation axis 
(1-2 GHz)
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Wide-band A-Projection
● The effective PB is frequency independent 

– Rotationally asymmetric PB, non-uniform frequency-dependence 

From the center of the beam, 
moving outwards along the 
animation axis.

Frequency along the  
animation axis (1-2 GHz)

Classical imaging WB A-Projection imaging

Blue curve: Classical imaging
Green curve: WB A-Proj. imaging
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Wide-band AW-Projection
●

● Full-polarization case requires:

● Can be configured for optimal usage for:

– High frequency: A-Projection, scaling with frequency

– Low frequency: AW-Projection

– Heterogeneous array

D ≠ A∗W /o

CFStore2:
    Matrix<CountedPtr<CFBuffer> > storage_p

CFBuffer:
     Cube<CountedPtr<CFCell> > storage_p

CFCell:
     CountedPtr<Matrix<T> > storage_p
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Physics of “unification”
● Physics of DD terms go into the construction of D

● Multiple DD terms become “convolution of convolution functions”

         W             <convolved>                    A

● E.g. form of the phase of A-term accounts for mosaicking, pointing 
corrections, etc.

● Wide-band, full-pol., low-freq. Mosaic can be done naturally

● Complexity goes in the construction of the CFs 

● Rest of the imaging / calibration framework remains oblivious
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