

#### **EVLA** overview

Current and future capabilities



Michael P. Rupen

Project Scientist for the WIDAR Correlator



Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array





#### What is the EVLA?

A very quick introduction





















































## **Basic scientific capabilities**







#### **Sensitivity & frequency coverage**

Pull down 2 x 1 GHz (4 GHz) at once, within a given band ~20sec to change bands

Assumes all antennas fully outfitted





#### Availability of Remaining Wide-band Receivers



#### Receiver availability

I-4 GHz: new OMTs (better polarization performance)

8-12 GHz: wideband receivers

3-bit samplers: 2 x 8 GHz bandwidth. This has slipped by a few weeks







# Angular resolution, largest angular scale, & field-of-view

4 configurations: A  $\rightarrow$  big; D  $\rightarrow$  small

~4 months in each configuration, cycling D C B A

(plus hybrids for southern sources)



|                       | VLA                           |                             | WIDAR-2013                                                                                |  |
|-----------------------|-------------------------------|-----------------------------|-------------------------------------------------------------------------------------------|--|
| Quantization          | 3-level                       | 16-level                    | 16/ <b>256</b> -level                                                                     |  |
| # antennas            | # antennas 27                 |                             | 32                                                                                        |  |
| Max. bandwidth        | 0.2 GHz                       | 10 GHz                      | 16 GHz                                                                                    |  |
| # subband pairs       | 1 - 2                         | 1 – 48                      | 1 – 64                                                                                    |  |
| # channels<br>(total) | 2-512                         | 256 – 32,768                | 256 <b>– 4,194,304</b>                                                                    |  |
| Max./min. δν          | 50 MHz / 381 Hz               | 2 MHz / 122 Hz              | 2 MHz / <b>0.12 Hz</b>                                                                    |  |
| dt <sub>min</sub>     | 1.7 sec                       | 0.1 sec                     | 0.01 sec                                                                                  |  |
| Max. data rate        | 3.3 x 10 <sup>3</sup> vis/sec | 6 x 10 <sup>6</sup> vis/sec | <b>7.5</b> x <b>10</b> <sup>6</sup> vis/sec<br>(1600-16000 x 10 <sup>6</sup> vis/<br>sec) |  |
| Extras                | Phasing<br>VLBI<br>Subarrays  | Phasing<br>Subarrays        | Phasing <b>VLBI</b> Subarrays                                                             |  |
| Corréla               | IDAR                          | Auto-correlation            | Pulsar phase bins Burst mode Auto-correlation                                             |  |
| Cor                   | relator M                     |                             |                                                                                           |  |



#### Flexibility: truly independent subbands

#### **64** independent **Spectral Windows**

Ability to make simultaneous continuum & multiple line measurements (e.g., L band, all at once:

continuum

galactic + extragalactic HI imaging & absorption

**OH** lines

>10 radio recombination lines)







#### Flexibility: truly independent subbands

#### **64** independent **Spectral Windows**

Requires each subband be truly independent:

- Tuning
- Bandwidth (31.25 kHz 128 MHz)
- Number of polarization products (single, dual, full)
- Number of channels
- Trade time resolution for channels (recirculation)
- Trade subbands for channels (hardware stacking)
- Dump rates







#### **Computing challenges**

- The EVLA produces a LOT of data: ~50 MB/s now, ~75 MB/s for this proposal cycle
  - I hour= 180 GB @ 50 MB/s
  - Simply transferring the data is painful → internet or disks
- Complete frequency coverage and wide bandwidths
  - Radio frequency interference (RFI) everywhere
  - Instruments vary (e.g., field-of-view goes as wavelength)
  - Sources vary (e.g., freq^2 → factor 4 different in flux over
    2:1 bandwidth ratio)
  - Extremely sensitive → sidelobes and dynamic range issues
     LOTS more science: lines, spectral shapes, polarization,



## **Dynamic scheduling**

- Everything is dynamically scheduled
- Can't tell exactly when your schedule will run, or what will have been observed just before that
  - Initial slew is uncertain
- Scheduling is based on:
  - TAC priority (A B C, science, etc.) i.e., competition
  - Current weather (rms phase, wind by-band defaults, which you can override) – note we do not yet look at the ionosphere, weather predictions, solar activity, opacity, RFI
  - Efficiency





## **Dynamic scheduling**

- Getting on the telescope:
  - Get your observing schedules in early
  - Short blocks are easier...but require more overhead
  - Can request `filler' time (short bad weather blocks) note
     we are accepting much more Priority C than in the past
  - Daytime is harder (competes with commissioning, maintenance)
  - The weather changes during the year





#### Commissioning while observing

- We are still commissioning the EVLA
- Shared risk: we do our best, but we do sometimes make mistakes
- Commissioning: we're still putting the system together
  - Capabilities are not all there
  - We are still learning the best & most efficient ways to reduce the data
  - Ten steps forward, two steps back (hey, we're getting better!)
  - The staff is very busy these days be patient with us please!





#### Commissioning while observing

- We take scientific/TAC priorities very seriously
- We take Resident Shared Risk Observing very seriously (see next few slides)





## **Proposing for the EVLA**

February 1, 2012 call for proposals





#### February 1, 2012 deadline

- This call only: only BnA and A configurations
- Covers 7sep12-7jan13
- Regular, Rapid response, Filler proposals (<10 GHz, anytime, 30-60mins)</li>
  - Key science
  - Proprietary period normally 12months since last observations
- Please note:
  - Observing time includes overheads (flux, phase, bandpass calibration; slew time; dummy scans)
  - OSRO has become much more impressive (next slide)
  - Referees, scientific groupings, and TAC have changed
- Joint proposals with Fermi, Chandra
- Future calls: Feb 1, Aug 1
  - Exploratory/DDT proposals anytime (<=6 mos. proprietary period)</li>



## Open Shared Risk Observing (Ifeb I 2)

Table 2: Correlator capabilities per sub-band for dual polarization

| Sub-band BW<br>(MHz) | Number of channels/poin product | Channel width<br>(kHz) | Channel width (km/s<br>at 1 GHz) | Total velocity coverage<br>(km/s at 1 GHz) |
|----------------------|---------------------------------|------------------------|----------------------------------|--------------------------------------------|
| 128                  | 128                             | 1000                   | 300/v(GHz)                       | 38,400/v(GHz)                              |
| 64                   | 128                             | 500                    | 150                              | 19,200                                     |
| 32                   | 128                             | 250                    | 75                               | 9,600                                      |
| 16                   | 128                             | 125                    | 37.5                             | 4,800                                      |
| 8                    | 128                             | 62.5                   | 19                               | 2,400                                      |
| 4                    | 128                             | 31.25                  | 9.4                              | 1,200                                      |
| 2                    | 128                             | 15.625                 | 4.7                              | 600                                        |
| 1                    | 128                             | 7.813                  | 2.3                              | 300                                        |
| 0.5                  | 128                             | 3.906                  | 1.2                              | 150                                        |
| 0.25                 | 128                             | 1.953                  | 0.59                             | 75                                         |
| 0.125                | 128                             | 0.977                  | 0.29                             | 37.5                                       |
| 0.0625               | 128                             | 0.488                  | 0.15                             | 18.75                                      |
| 0.03125              | 128                             | 0.244                  | 0.073                            | 9.375                                      |

- 2 basebands
- 8 contiguous subbands per baseband (8x128-8x0.03125 MHz)
- Full, dual, single pol'n products
- Within a baseband all subbands have same BW, number of channels, pol'n products
- Lower sensitivity at subband edges
- No Doppler tracking





## Resident Shared Risk Observing (Ifeb I 2)

- Up to 25% of observing time
- Full access to EVLA capabilities at the time of observing...
- In exchange for helping us out with commissioning
  - Come to Socorro for at least 3 months (1 mo./10 hrs of obs time)
  - Work in commissioning group
  - Proposal includes a technical justification of your proposed commissioning work
  - Commissioning part of proposal is separately reviewed, after passing the scientific TAC
- Possible areas: fast dumps, pulsars, VLBI, planetary observing, OTF mosaicking, automatic flagging, solar observing, advanced imaging algorithms and data analysis tools, pipeline, ...



# Resident Shared Risk Obs.

| Dates                     | Array config. | Max. total<br>bandwidth per<br>poln.    | No.<br>sub-band<br>pairs | Channels per<br>sub-band pair (4<br>poln products) | Max allowed<br>data rate | Cumulative<br>Capabilities                                                                                                  |
|---------------------------|---------------|-----------------------------------------|--------------------------|----------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 2010 Mar<br>- 2010<br>Sep | D             | 2 GHz (8-bit<br>samplers)               | 16                       | 64                                                 | 15 MB/s                  | - Sub-bands identical - Sub-bands indep. tunable with restrictions - Can trade polarization products for channels           |
| 2010 Oct<br>- 2011<br>Jan | С             | 2 GHz                                   | more than<br>16          | 64                                                 | 15 MB/s                  | - Can trade sub-bands<br>for channels                                                                                       |
| 2011 Feb<br>- 2011<br>Apr | В             | 2 GHz                                   | 64                       | 64                                                 | 15 MB/s                  | - 64 Sub-band pairs available                                                                                               |
| 2011 May<br>- 2011<br>Aug | А             | 2 GHz                                   | 64                       | up to 16,384                                       | 25MB/s                   | - Recirculation enabled<br>- Fewer restrictions on<br>Sub-band tuning<br>- N_chan * N_pol<br>restricted by max data<br>rate |
| 2011 Sep<br>- 2011<br>Dec | D             | 2 GHz                                   | 64                       | up to 16,384                                       | 25 MB/s                  | - Sub-bands can be independently tuned                                                                                      |
| 2012 Jan<br>- 2012<br>Apr | С             | 2 GHz                                   | 64                       | up to 16,384                                       | 50 MB/s                  | - Sub-bands may have<br>different BW & N_chan                                                                               |
| 2012 May<br>- 2013<br>Jan | В, А          | 2/8 GHz (3-bit<br>or 8-bit<br>samplers) | 64                       | up to 16,384                                       | 75 MB/s                  | - Basebands either 1<br>GHz or 4 GHz BW                                                                                     |

Ifeb12

deadline ->



3 I dec 12 Formal end of construction project



## Resident Shared Risk Observing (Ifeb I 2)

Table 3: Correlator capabilities per sub-band with recirculation; the number of polarization products may be traded for number of channels

| Sub-band<br>BW (MHz) | Number of poin, products | Number of<br>channels/poln<br>product | Channel<br>width (kHz) | Channel width<br>(km/s at 1 GHz) | Total velocity coverage per<br>sub-band (km/s at 1 GHz) |
|----------------------|--------------------------|---------------------------------------|------------------------|----------------------------------|---------------------------------------------------------|
| 128                  | 4                        | 64                                    | 2000                   | 600/v(GHz)                       | 38,400/v(GHz)                                           |
| 64                   | 4                        | 128                                   | 500                    | 150                              | 19,200                                                  |
| 32                   | 4                        | 256                                   | 125                    | 37.5                             | 9,600                                                   |
| 16                   | 4                        | 512                                   | 31.25                  | 9.4                              | 4,800                                                   |
| 8                    | 4                        | 1024                                  | 7.813                  | 2.3                              | 2,400                                                   |
| 4                    | 4                        | 2048                                  | 1.953                  | 0.59                             | 1,200                                                   |
| 2                    | 4                        | 4096                                  | 0.488                  | 0.15                             | 600                                                     |
| 1                    | 4                        | 8192                                  | 0.122                  | 0.037                            | 300                                                     |
| 0.5                  | 4                        | 16384                                 | 0.031                  | 0.0092                           | 150                                                     |
| 0.25                 | 4                        | 16384                                 | 0.015                  | 0.0046                           | 75                                                      |
| 0.125                | 4                        | 16384                                 | 0.0076                 | 0.0023                           | 37.5                                                    |
| 0.0625               | 4                        | 16384                                 | 0.0038                 | 0.0011                           | 18.75                                                   |
| 0.03125              | 4                        | 16384                                 | 0.0019                 | 0.00057                          | 9.375                                                   |





## What NRAO can do for you

After the proposal





#### Documentation on the Web

Go to www.nrao.edu, click on astronomer, then EVLA:

- Observational Status Summary: basic introductory guide with (almost) everything in this talk, and more!
- EVLA Exposure Calculator: how long does it take to get to ImicroJy/beam?
- FAQs: how much overhead do I need?
- eNews: late-breaking news for our observing community
- Data archive: all VLA, VLBA, EVLA data are accessible through the NRAO archive
- Plus information on proposal submission, observing scripts, memo series,
   RFI plots and lists, data reduction...





#### **Training**

- Community days
  - Berkeley, CA Jan 13, 2012
- AAS splinter sessions & NRAO booth
- Data reduction workshops
  - Caltech, CA Jan 19-20, 2012
  - Socorro, NM Feb 22-Mar 1, 2012
- Synthesis Imaging Workshop (and books) every two years
  - Socorro, NM May 29- Jun 5, 2012
  - Single dish workshops in Green Bank, WV every other year
  - Lectures are on the Web
- Visit NRAO





#### Support

- Travel support
- Preprint and page charges
- Large proposal/key science support
- Students (undergraduate and graduate)
  - Summer students
  - Student observing support (also class observations in some cases)
  - Co-op program (undergraduates)
  - Graduate student internships
  - Graduate fellowships
- Postdoctoral fellowships (Jansky and others)
- Short- or long-term visits





#### **NRAO** staff

- Helpdesk
- E-mail, telephone
- Wide variety of radio expertise
  - Data analysts
  - Software engineers
  - Hardware gurus
  - Scientific staff
- Friendly (mostly), helpful (usually)
  - We really do like working in a national observatory
  - You can't possibly have crazier ideas than we do





#### Some recent results (just for fun)

Recent demo/science results from the EVLA





#### The jet of M87, then and now





#### The jet of M87, then and now

VLA, 44 GHz







## Relics and jets in Abell 2256

 I-2 GHz, 20arcmin on a side; color corresponds to spectral index (Owen, Rudnick, Eilek, Rau, Bhatnagar, Kogan)







## SS433 @ 26 GHz: I2 ~weekly snapshots



Miller-Jones et al./demo science





## ICIO (dwarf galaxy) at 6cm







## **Backup slides**

Low frequencies A few more pics





#### Below I GHz at the EVLA: receivers

- Lowband: 58-84, 230-430 MHz
- First receiver set in the lab being tested; 2<sup>nd</sup> in final stages of construction
- An optimistic schedule of getting them on the array:
  - Jan 2012: 2
  - Mar 2012: 6
  - End 2012: 28
- RSRO would really help, in the second half of 2012
  - Probably could get a bit of ToO time (<10hrs per project) on that timescale
  - Optimistically might hope for "regular" RSRO call in Aug 2012 (for 2013)
- Pretty pics: http://www.aoc.nrao.edu/~pharden/LBR/lbr.htm



#### Below I GHz at the EVLA: feeds

- Initially use the old 4, P band dipoles
  - Means special campaigns for lower band upper should be available all the time
- New feed based on Harun & Ellingson (Va Tech) is in the early stages of design
- 74 MHz dipoles:

http://www.aoc.nrao.edu/~pharden/LBR/PIX/pix.htm#74dipole







# Below I GHz at the EVLA: pretty pics

