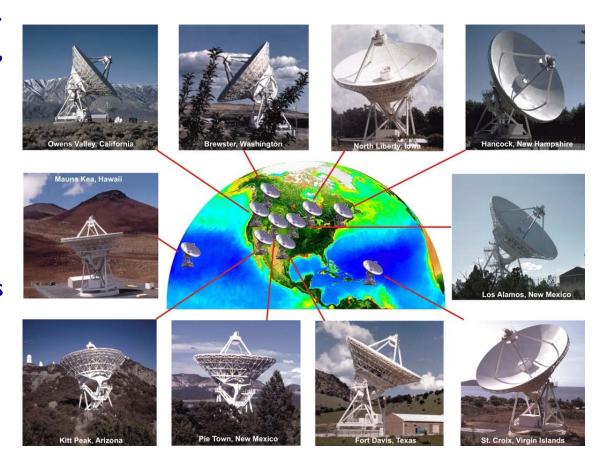
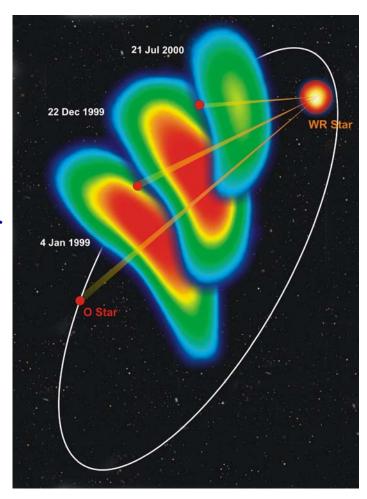

The Very Long Baseline Array

Amy Mioduszewski & Emmanuel Momjian (NRAO)

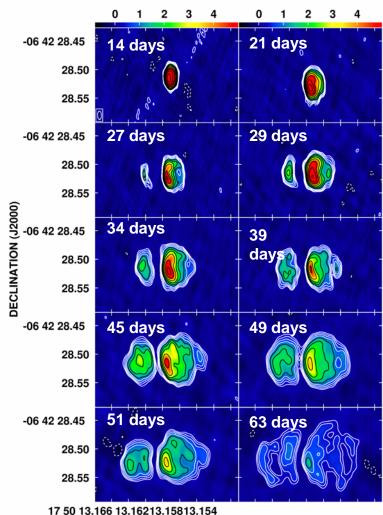

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

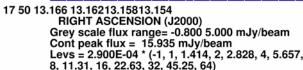
Basics


- 10 x 25 meter antennas.
- Spread from Mauna Kea, Hawaii to St. Croix, Virgin Islands.
- Baseline lengths range from 200 to 8600 km.
- Sensitive to compact structures with brightness temperatures above 10⁵ K.
- Correlated on a software correaltor, DiFX.

What is the VLBA good for?

- Resolution
 - 0.08 to 25 mas
 - In the galaxy (100pc-10kpc): I
 mas resolution is 0.1-10 AUs
 (even less than a stellar radius for
 nearby stars)
 - For nearby extragalactic (I-1000Mpc): I mas resolution is 1000 AU-5pc
 - E.g., WR I 40, colliding wind region in Wolf-Rayet binary star system

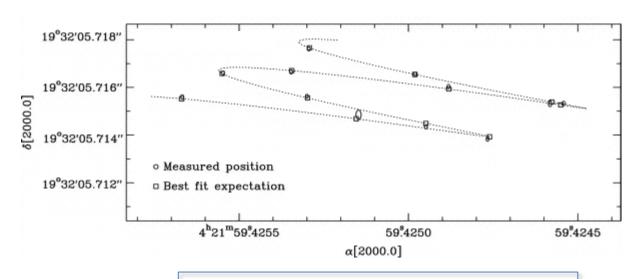




Dougherty et al. 2005

What is the VLBA good for?

- Monitoring/fast response
 - Dedicated array
 - Targets of Opportunity
 - Watching objects evolve
 - E.g. I.6 GHz observations of recurrent nova RS Oph.



What is the VLBA good for (cont.)?

- Geodesy
 - Earth Rotation and Orientation, tectonic plate motions
- Astrometry
 - Fundamental reference frame
 - Parallax, proper motions... (e.g., TTauSb Loinard et al. 2007)

 $d = 147.6 \pm 0.6 - 0.4\%$ precision

Frequency bands and sensitivity

λ(cm)	v(GHz)	σ(μJy/beam) in 4 hrs at 2Gbps
90 cm	0.312 - 0.342	277*
50 cm	0.596 - 0.626	782*
21 cm	1.35 - 1.75	13-14
13 cm	2.15 - 2.35	14
6 cm	4.6 - 5.1	13
6 cm (upgrade)	4.1 - 7.9	8
4 cm	8.0 - 8.8	13
2 cm	12.0 - 15.4	24
1 cm	21.7 - 24.1	18-22
7 mm	41.0 - 45.0	66
3 mm	80.0 - 90.0	316†

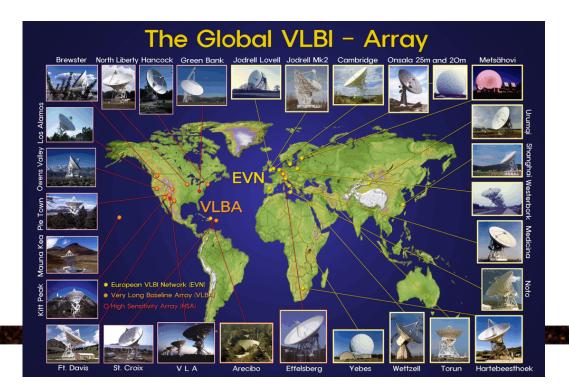
- Maximum bandwidth 256
 MHz with two
 polarizations available
 Feb 2012 proposal
 deadline
- More later about:
 - Sensitivity upgrade
 - C-band upgrade
 - Increasing sensitivity
 by adding
 more/larger
 telescopes to the
 array

† 8 stations

^{*} Narrower bandwidths

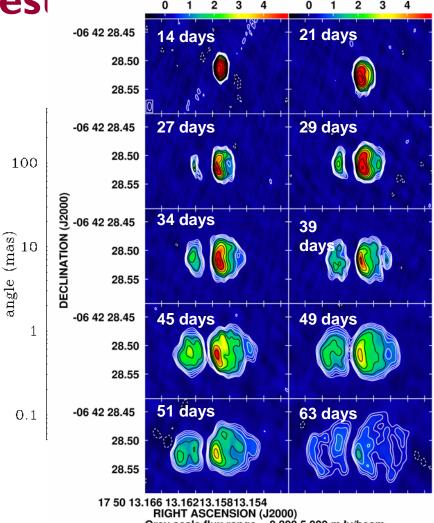
High Sensitivity Array (HSA)

- Adding the Green Bank Telescope (GBT), Arecibo (AR), Effelsberg (EB) and/or the phased VLA (Y27, currently unavailable) with the VLBA can increase the sensitivity by an order of magnitude
 - The VLBA + any two of these telescopes is considered an HSA experiment
- All these telescopes have a smaller field of view than the VLBA and may not have all the frequencies available at the VLBA.
- Can be proposed for in the normal NRAO proposal cycle
- Y27 under development and can be proposed for in the 2012 August I deadline.



Global VLBI

- Add telescopes from the European VLBI Network (EVN) to the VLBA.
- The EVN has many large sensitive telescopes adding them increases the sensitivity as well as improving *uv* coverage (e.g. EVN has many more short baselines so can be more sensitive to larger structures)
- Proposed for through the EVN Northstar system. Deadlines are Feb 1,
 June I and Oct I.



Resolution and Largest

- Depending on frequency the resolution of the VLBA is anything from 0.08 to 25 mas
- The largest angular scale determines the largest structure the telescope is sensitive to.
 - E.g. I.6 GHz
 observations of
 recurrent nova RS
 Oph. At 63 days
 remnant is starting to
 be over resolved.

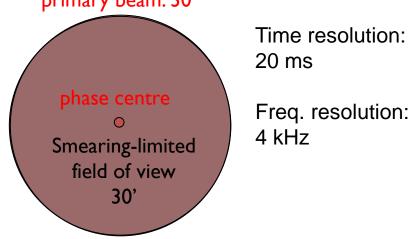
50 13.166 13.16213.15813.154 RIGHT ASCENSION (J2000) Grey scale flux range= -0.800 5.000 mJy/beam Cont peak flux = 15.935 mJy/beam Levs = 2.900E-04 * (-1, 1, 1.414, 2, 2.828, 4, 5.657, 8, 11.31, 16, 22.63, 32, 45.25, 64)

Sensitivity Upgrade

- There are many parts to the sensitivity upgrade, some have already been implemented:
 - DiFX correlator: allows several new capabilities (more later)
 - Wider bandwidths: for a total of 256 MHz, dual polarization. This gives a total bit rate of 2 Gbps, and enables twice the sensitivity of the current VLBA. <u>Available the 2012 Feb 1 proposal deadline.</u>
- Some in the process of being implemented:
 - C-band upgrade: replace the VLBA's 6 cm receivers
 - To expand the tuning range to 4.1 7.9 GHz. Which will enable observations of the 6.7 GHz transition of methanol.
 - To increase sensitivity, noise will go down by ~35%
 - Expected to be completed mid-2012

DiFX Correlator Capabilities I: Spectral Resolution

- DiFX is a software correlator in Socorro, NM
- Supports up to 4096 channels per sub-band routinely
- Up to 32,768 channels if required and adequately justified
- Spectral zooming can do higher spectral resolution in one or more subbands. Useful for:
 - Masers with in-beam continuum calibrators: wide bands used for maximum sensitivity on calibrator while at the same time high spectral resolution on maser lines.
 - Masers with multiple transitions: wide bands are used to cover a large number of widely separated maser transitions, spectral zooming allows the empty portions of high-resolution spectrum to be discarded


DiFX Correlator Capabilities II:Wide Field Imaging

 DiFX enables wild field imaging due to high spectral and time resolution.

 This ability has been widely used since the introduction of DiFX

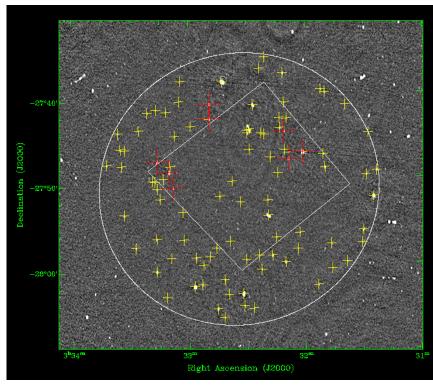
However, full-beam
 VLBA imaging is still
 a logistical impracticality,

12hr VLBA dataset: 30,000 GB!

Calculations for 1.6 GHz, total smearing = 10%

DiFX Correlator Capabilities III: Multi-Field Imaging

- The sky is almost entirely empty at VLBI resolution
 - "full beam" imaging not needed; rather, many small
 "fields" (phase centers)
- In previous correlators, multiple fields required multiple correlator passes (usually at same or twice the rate of observation time)
 - Impractical for more than a few fields.


DiFX Correlator Capabilities III: Multi-Field Imaging

- Using uv shifts inside the correlator
 - DiFX allows many phase centers in one correlator pass
 - The overhead is ~2.5 and is only weakly dependent on the number of phase centers
- For reasonable spectral and time resolution requirements,
 200 phase centers require only 20% more correlator time than 2 phase centers.

DiFX Correlator Capabilities III: Multi-Field Imaging

- This enables new science:
 - mJy-sensitivity secondary calibrator searches within a beam
 - Efficient VLBI surveys of mJy and sub-mJy objects are feasible. E.g. Middelberg et al. (2011) already published VLBA results on Chandra Deep Field South

From Middelberg et al., 2011

Observing Strategies

- Amplitude calibration done with system temperature and gain curve, no amplitude calibrator is needed
- Three kinds of calibrators are needed (they can be the same source):
 - Delay calibrator (fringe finder) few minutes on a strong source
 - Bandpass calibrator on a strong source
 - Phase calibrator nearby source
 - If target is strong then occasionally observe as a check source
 - If target is weak *and/or* absolute positions are needed then observe often to set phases

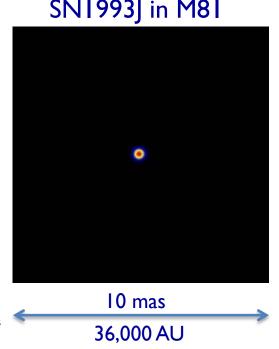
Phase referencing

- Observe a phase calibrator every ~30s to few minutes depending on observing frequency.
- Very powerful tool for both weak targets and targets for which position is important
 - → overhead 30-50%, maybe more

Phase referencing

- Need a <u>nearby</u> source that is <u>strong</u> enough to determine the phase
 - Distance depends on frequency and weather
 - < 1° is golden, aim for < 3°
 - Should be closer for higher frequencies
 - Strength depends on your array and frequency of observation.
 For wide bandwidth and middle frequencies (1.4-22GHz)
 - for VLBA only >50mJy is safe
 - with more sensitive antennas (e.g., GBT, AR...) > 10mJy is required
- Used for Astrometry with some extra calibration (next slide)

Astrometry


- Main problem in astrometry is the difference in the atmosphere between the target and the calibrator
 - ideal situation is if you have a very close (<0.5° or even better in-beam) calibrator and hopefully a high dec target
- If not, then to increase the precision of position measurement extra calibration steps have to be taken (these methods are complimentary)
 - Geodetic type blocks: in these observe 20ish strong calibrators scattered across the sky with widely spaced subbands to fit the atmospheric zenith delay
 - Rule of thumb is 30 minute blocks every ~3 hours
 - Fit local delay wedge: observe ~3 calibrators around your target and fit a phase slope.

Rule of thumb is ~4 minutes every ~30 min

Important Links

- VLBA Observational Status Summary
 http://www.vlba.nrao.edu/astro/obstatus/current/
- EVN Sensitivity Calculator
 http://www.evlbi.org/cgi-bin/EVNcalc
- HSA pages
 https://science.nrao.edu/facilities/vlba/proposing/HSA
- Proposal Submission Tool <u>my.nrao.edu</u>
- SCHED observation preparation software
 http://www.aoc.nrao.edu/software/sched/index.html
- AIPS data reduction software http://www.aips.nrao.edu/index.shtml

Bartel et al. 2000

