ABSTRACT: A key problem on the path to star formation within a large molecular cloud is understanding the origin of substructure on the scale of dense cores capable of forming protostars. While gravity plays a key role in the evolution of small structures, the relative contributions from other processes (e.g., turbulence, ambipolar diffusion) remain unknown. To study the processes that form cores, we need to explore a core-forming region.

Perseus B1-E: Perseus B1-E (Ridge et al. 2006) is a small (~ 0.1 sq. deg) clump of high extinction (A_v > 5) located roughly 0.7º east of the B1 clump in the Perseus cloud (see Figure 1). Previous studies of core populations in Perseus have shown that dense cores and early phase YSOs are located in regions of high extinction (Kirk et al. 2006). Despite this correlation, a SCUBA 850 micron map (see Figure 2a) of B1-E does not indicate prominent substructure.

Recently, western Perseus was observed as part of the Herschel Gould Belt survey (see Pezzuto et al. in prep) using the PACS (Poglitsch et al. 2010) and SPIRE (Griffin et al. 2010) instruments at 70 – 500 microns in Parallel Mode. These data show evidence of substructure (see Figure 2b) with fluxes of ~1 Jy/beam (at 250 microns) in B1-E.

Analysis: We corrected the offset in each band using Planck/IRAS data and then convolved each map to the 500 micron beam and regridded them to a common resolution. The map intensities of the well detected bands (160 – 500 microns) were fit by the modified black body function,

\[I_\nu = \kappa_\nu B_\nu(T)N_{H_2}, \]

where \(\kappa \propto \nu^2 \) and is 0.1 cm^2 g^{-1} at 1000 GHz. Assuming \(\beta = 2 \), we produced temperature and column density maps (e.g. see Figure 3). The median column density is ~6.3 x 10^{21} cm^{-2}, which is similar to the threshold column density (6 x 10^{21} cm^{-2}) for dense structures to form by gravitational instability in filaments (Andr\é et al. 2010).

Indeed, B1-E appears to be undergoing dense core formation. Dense structures were identified using the algorithm GETSOURCES (Men'shchikov et al. in prep), which extracts objects at different spatial scales simultaneously over all bands. For B1-E, 42 objects were extracted, of which 30 had good SED fits in at least four bands. Figure 4 shows four well-fit SEDs with best-fit modified black body functions.

Future work: Figure 5 shows low angular resolution (46 arcsec) CO line profiles of this complex. Planned higher resolution CO maps are necessary to home in on the dense structures to see from line widths whether these objects are gravitationally bound or transient.

In addition, planned observations of ammonia emission will be used to reveal the properties of gas in the dense structures, such as density, temperature, and kinematics, providing additional important constraints to core formation mechanisms.

Acknowledgements:

This work is supported by the Canadian Space Agency and the Natural Sciences and Engineering Research Council of Canada.

Special thanks to Nicole Schneider, Martin Hennebelle, and Babar Ali for their assistance in reducing Herschel data with HiPE. Level 2 Herschel maps were created using SCAM/AMORPHIS, developed by Hélène Roussel.

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Perseus observations are part of the Gould Belt key program led by P. André and P. Saraceno.