Near-infrared & CARMA Observations of the Confirmed Massive Pre-ZAMS Object Mol 160 A

G. Wolf-Chase1,2, M. Smutko1,3, R. Sherman2, D.A. Harper2 and M. Medford3

(1) Adler Planetarium, (2) University of Chicago, (3) Northwestern University

Abstract

We present near-infrared images of Mol 160 (IRAS 23385+6053) that include a young stellar cluster, two HII regions, and a confirmed massive pre-ZAMS object, Mol 160 A. In addition to diffuse H$_2$ 2.12 µm and 2.25 µm emission that we attribute to dust fluorescence from Parent-Disassociation Regions (PDRs) surrounding the HII regions, we identify ten H$_2$ 2.12 µm Molecular Hydrogen Emission-Line Objects (MHOs) that have no detected 2.25 µm counterparts. A comparison of the H$_2$ 2.12 µm fluxes with upper limits derived from the H$_2$ 2.25 µm observations suggests that the MHOs are due to shocked gas, presumably associated with outflows in this region. Despite the high extinction towards Mol 160 A, we detect two MHOs with apparent separation of ~4" in bipolar emissions about this object. We have also acquired CS, HCO+, and CH$_3$OH and the 3 mm continuum observations of Mol 160 A with CARMA. The MHOs are associated with Class I CH$_3$OH masers and high-velocity HCO+ outflow emission, although one MHO is offset ~0.75" from the brightest CH$_3$OH and HCO+ peaks. We detect two MHOs at distances of ~46" & ~49" from Mol 160 A that are oriented along the axis of the large-scale CO outflow, which is distinctly different from the axis of the compact HCO+ outflow and CH$_3$OH masers.

Figure 1a: Mol 160 region (IRAS 23385+6053): Combined H$_2$, 2.12 µm (green), H$_2$-continuum 2.13 µm (blue), and HI 2.25 µm (red) images. VEPSO (top) with 21 µm detection identified in Table 1 of Molinari et al. (2008). The box indicates the pull-out in Fig. 1b of Mol 160 A, which is a confirmed massive protostar. Note the bright bipolar H$_2$ 2.12 µm knots associated with this object and the complete lack of continuum emission. Other identified MHOs are circled. The double arrows link two MHOs that are aligned along the large-scale CO outflow identified by Zhang et al. (2005).

Figure 1b: Mol 160 A - MHOs (grey-scale) CO 2, 1 mm continuum peak (diamond) Class I CH$_3$OH masers (x) HCO+ outflow (blue & red contours) (from 0.55 km s$^{-1}$ resolution data) Bright: 87.2945 to 54.1115 km s$^{-1}$ Red: 90.4280 to 74.8455 km s$^{-1}$

Looking Toward Alma:

- Mol 160 A is ~10 X as distant as Orion BNKL. The Mol 160 A core and bipole MHOs span a distance comparable to the BNKL HII regions. ALMA observations with diffraction-limited molecular outflows that appear to be scaled up versions of their lower-mass counterparts (e.g., Caratti o Garatti 2006, 2008) from explosive events such as BNKL (Zapata et al. 2009) (Which type does the Mol 160 A outflow(s) represent?)
- ALMA will (1) enable evaluation of which objects drive outflows and separate their energetics; (2) detect dust from lower-mass objects in the Mol 160 A core.
- Mol 160 A is an ideal Early Science single-pointing target (or small mosaic for Band 9).
- Mol 160 A has been observed over a range of frequencies and spatial scales, facilitating flux recovery and source reconstruction.

Results-to-Date

- Mol 160 (IRAS 23385+6053) is part of a near-band near-infrared imaging survey we have conducted on regions containing candidate High Mass Protostellar Objects (HMPeOs), which have also been associated with massive outflows identified in CO J=2–1 data (Wolf-Chase et al. 2011; Zhang et al. 2005).
- Mol 160 A is a confirmed massive pre-ZAMS object (Molinari et al. 2008). Though it is undetected at continuum wavelengths shorter than 24 µm, H$_2$ 2.12 µm MHOs, with flux calibrated magnitudes of F$>$3.5 & 19.7 µJy within 4" of Mol 160 A, the H$_2$ 2.12 µm detection within 4" of 160 A is remarkable, given that NO$_2$ models in the central 4" are ~10$^{-2}$ cm$^{-1}$ (Molinari et al. 1998; Fontani et al. 2004). Lack of detection of the H$_2$ 2.25 µm line strongly suggests the 2.12 µm emission is shock-produced. NIR spectroscopy is required to determine the actual extinctions toward the MHOs, and thereby the true H$_2$ luminosity.
- The association of the MHOs with Class I CH$_3$OH masers and a compact HCO+ outflow indicates the H$_2$ 2.12 µm emission traces shocks in an outflow centered on Mol 160 A. This outflow lies along a different position angle from the large-scale CO outflow associated with this object (Zhang et al. 2005), however, we detect two other MHOs at distances of ~46" & ~49" from Mol 160 A that lie approximately along the axis of the CO outflow and are co-linear with Mol 160 A.
- The surface density of the Mol 160 A core (which encloses ~324 M$_\odot$ at 4" - Fontani et al. 2004; Molinari et al. 1998) is ~4.9 - 9.6 cm$^{-2}$, depending upon the adopted distance, which is consistent with theoretical models predicting the formation of at least one massive star (Krumholz et al. 2010).
- A list of positions of the ten MHOs (29215 – 29254) we identified in Mol 160 can be found in the on-line MHO catalogue hosted by the Joint Astronomy Centre in Hawai (Davis et al. 2010).

Observations

Apache Point Observatory: Near-infrared data were acquired using the NICPFS instrument on the 3.5-m telescope at Apache Point, NM (Vincent et al. 2005). We recorded data in K, (1000 sec), H$_2$, 2.12 µm (2400 sec), H, 2.25 µm (1800 sec), and in a narrow-band H$_2$ continuum filter centered on 2.13 µm (2400 sec). All images were reduced using standard techniques (sky subtraction, flat fielding, etc) in IRAF. Plus calibration was done by comparing stars in our Ks data to the same stars in the 2MASS point source catalogue.

CARMA: 3 mm continuum, CH$_3$OH (95.169 GHz), HCO+ (89.189 GHz), and CS (97.981 GHz) spectral-line observations were acquired simultaneously on March 23 & 24, 2010, with the interferometer in the C configuration with baselines ranging from 26-370 meters. The synthesized beam has a FWHM of ~2.005" X 1.683" MWC349 and Uranus were used as flux calibrators, 3C48 and 1927+739 were used as passband calibrators, and 0102+584 was used for phase calibration. Total on-source integration time over multiple observations was ~4.5 hours. Calibration and imaging were performed using the MIRAD data reduction package (Band et al. 1999).

Figure 2: (generated using the CASA Viewer) Channel maps of 3.28 km s$^{-1}$ resolution CARMA HCO+ data.

Figure 3: (from the CASA Viewer) CARMA HCO+ - CK & CH$_3$OH spectra at: blue-shifted outflow peak (upper); continuum peak (middle); and red-shifted outflow peak (lower)

References

Vincent, M.b., et al. 2003, SPIE, 4841, 367