

Spectroscopy2011 January 16, 2011

Transition Disk Chemistry in the Eye of ALMA

Ilse Cleeves

Univ. of Michigan

ADVISOR:

Edwin Bergin

Outline

- I. Transition Disks: Introduction
- II. Model Framework
- III. First Results Using CB 26: Test Case Disk
- IV. Chemical Results: Implications
- V. Observables The Power of ALMA

I. Circumstellar Disks in **Transition**

Thalmann et al. 2010: imaging the wall in LkCa 15; consistent with SED disk models → the result of forming protoplanets?

- Circumstellar disks observed → sites of planet formation.
 - Once a protoplanet is massive enough it can dynamically alter the disk \Rightarrow gaps, holes, etc.
 - ▶ The initial stages of planet formation involves grain growth and reduction of opacity
- Disks with gaps are called "Transition Disks."
- Disk chemistry will respond to the change in physical conditions → set initial chemical conditions at the point of planet formation.
- **Prediction:** The clearing of the inner-disk directly reveals the dense (and normally cold) gas rich midplane to the star.
 - Is this an observable effect? Must first be able to resolve this...
- ALMA has the power to resolve the gap \rightarrow can directly probe evolving region.

"Recipe" hv dust optical surface hot surface hot surface hot surface

cold midplane

DISK PHYSICS

- Size, Mass
- Disk Structure: e.g. D'Alessio disks (along with many other SED motivated models).

• DISK CHEMISTRY

- Dust (e.g. Weingartner & Draine), composition and settling.
- Shape of the UV field, continuum and line (Bethell), stellar and ISRF.
- Relevant chemical network (Fogel et al. 2011): ~6000 Reactions, ~600 Species.
- END PRODUCTS: Observables? Can calculate resulting line emission: LIME (Brinch et al. 2010).

III. UV-Field: Continuum

- UV drives the chemistry through processes such as photodissociation and photodesorption.
- Dependent on dust composition (opacity) and dust settling → many young disks highly settled.
- Transition disks structurally evolved → require full M.C. radiative transfer treatment.
- Include a separate treatment for Ly α
 photons which behave differently (Bethell &
 Bergin 2011; Fogel et al. 2011).

IV. CB 26: An Overview

★ Disk at the edge of a Bok GlobuleCB 26, 10° North of Taurus/Aurigadark cloud, D ≈ 140 pc.

Circumstellar disk - edge on.

- ► $R \approx 200 \text{AU}^2$
- ► $R_{gap} \approx 45 AU^2$
- ► $M_{disk} \approx 0.1 M_{sol}^{-1}$
- $L^* > 0.5 L_{sol}^3$
- ► $M_* \approx 0.5 \pm 0.1 \, M_{sol}^{-1}$
- ► $M_{dust} \approx 3e-3 M_{sol}^{2}$
- Specific model but typical T Tauri parameters used for model calculation → can generalize results.

¹ Launhardt & Sargent 2001; ² Sauter et al. 2009; ³ Stecklum et al. 2004

IV. CB 26 Model

Sauter et al. 2009 used spatially resolved maps in the NIR and mm along with the object's SED to create a consistent physical model for the system.

IV. CB 26 Model

Sauter et al. 2009 used spatially resolved maps in the NIR and mm along with the object's SED to create a consistent physical model for the system.

Wall heated to T = 30-50K, species that would typically be frozen out at the midplane can be sufficiently heated \rightarrow desorb from grains

Chemical model results: gas phase molecules at the wall!

LIME Results: C¹⁸0: J=2-1

Pre-ALMA

0.57" Res - 140pc with a 500m baseline

LIME Results: C¹⁸0: J=2-1

ALMA-Era

0.02" Res - 140pc with a 12km baseline

91.0 68.0 45.0 22.0

 $i = \frac{\pi}{2\sqrt{2}} \approx 60^{\circ}$

 $C^{18}O: J = 6-5$ a=0.01" v = 658.6GHz D = 140pc

"Ideal" ($\tau_{dust} \ll 1$) observation.

Actual observations will be dependent on inclination angle. Dust optically thick near the midplane.

Edge on disk obs. at 0.5 mm with column R = 200AU, density \sim 1e14 g/cm⁻³: $\tau_{dust, 0.5mm} > 1$ for z < 15AU.

However, only the case for nearly edge on systems.

No significant dust obstruction for midplane emission for i \sim 0-75°. This corresponds to \sim 93% of disks observed on the sky.

Summary

- **ALMA provides us with the ability to significantly** increase the resolved sample size of planetforming disks.
 - Will allow us to gain a full picture of the evolutionary process of disk dispersal and planet formation.
- High sensitivity allows us to go both deeper, and to use new tracers not previously employed due to sensitivity limitations.
 - Wall will distinctly light-up at high J states can selectively probe the transition region.
- The interface between the inner gap and outer disk (the wall) in transition disks should be a chemically active and interesting region that sets the initial conditions for protoplanet chemistry.

Observe gaps in dust...

The future: warm molecular rings!

0.0