Modeling the formation of interstellar CO₂, CO and water ice

Robin Garrod

Cornell University

Tyler Pauly

Iowa State University
(My NSF REU student at Cornell, summer 2010)

Interstellar H₂O, CO₂, CO ices

- Ices form on dust-grain surfaces
- Ices detected through IR absorption band spectroscopy
- Taurus dark cloud is best-defined example (Whittet & co.)
- Shape of spectra ⇒ Most CO₂ is in polar mixture (i.e water-rich)
- Smaller component in apolar mixture with CO
- CO₂ formation chemistry is a problem (for theoreticians)

Extinction thresholds (Taurus dark cloud)

$$A_{V,th}(H_2O) = 3.2\pm0.1$$

$$A_{V,th}(CO_2) = 4.3 \pm 1.0$$

$$A_{V,th}(CO) = 6.7 \pm 1.6$$

(All Whittet+ 2007)

Surface chemistry processes

GRAIN/ICE SURFACE

$$0 + 2H \rightarrow H_20$$

 $C + 4H \rightarrow CH_4$

CO formed in gas phase, then accretes

 $CO + 4H \rightarrow CH_3OH$ (act. Barriers)

CO₂ chemistry

• Three grain-surface reactions usually considered:

(1)
$$CO + O \rightarrow CO_2$$
 $\kappa_{\text{tunnel}} = 4.8 \times 10^{-23}$ (Goumans & Andersson 2010)

(2)
$$HCO + O \rightarrow CO_2 + H$$
 (no barrier)

(3)
$$CO + OH \rightarrow CO_2 + H$$
 $E_A = 80 \text{ K}$?

Reaction (3) could also happen like this:

$$H + O + \underline{CO} \rightarrow OH + \underline{CO} \rightarrow CO_2 + H$$

(now added to the chemical network)

More CO_2 chemistry: $CO + OH \rightarrow CO_2 + H$ (i.e. reaction 3)

- CO + OH → HOCO*
 - Small or even negative barrier (Song+ 2006; Chen & Marcus 2005)
- Once through initial barrier, either:

(i)
$$HOCO^* \rightarrow CO + OH$$

(ii)
$$HOCO^* \rightarrow CO_2 + H$$

(iii) HOCO* + surf.
$$\rightarrow$$
 HOCO + surf.
then HOCO + H \rightarrow CO₂ + H

Other products? (Goumans+ 2008)

Oba et al. 2010: Surface experiments with CO + OH reaction
 → CO₂ is formed, no alternative products.

CO + OH efficiency and competition

- If small initial barrier is overcome, reaction probably → CO₂
- If (simplistically):

[activation barrier] << [diffusion barrier of CO]

...then OH + CO \rightarrow CO₂ + H goes with efficiency ~100 (Not the same as gas-phase reactions)

- This has been ignored in previous models!
- So, we stick with $E_A = 80$ K barrier \Rightarrow efficiency ~100%

New chemical model

(Garrod & Pauly, submitted)

- 3-phase: Gas phase / Surface / Mantle
 (after Hasegawa & Herbst 1993)
- Allows chemical composition of each layer to be traced (and preserved)
- Treats chemistry as a surface phenomenon (true for low temps)
- Competition between barrier-mediated reactions and diffusion (previous gas-grain models have not treated this properly!)
- Chemical network of Garrod et al. (2008)
- Rate equations (modified rates as per Garrod 2008)
- Reactive desorption (Garrod et al. 2007) and photodesorption (Öberg et al. 2009)

Grain-mantle composition by layer:

DARK CLOUD:

$$n_H = 2 \times 10^4 \text{ cm}^{-3}$$

 $A_V = 10$

$$T_{gas} = T_{dust} = 10 \text{ K}$$

 $E_{dif} = 0.5 E_{des}$

- CO is good: ~20 % w.r.t. water ice
- CO_2 is good: $CO/CO_2 = 2 4$ (cf. Bergin+ 2005: 100:26 toward Elias 16)
- Methanol associated w/ oxygen depletion
- No early CO₂, and CO₂ never dominates
- Formation of CO₂ by O+H+CO reaction

Where does CO₂-dominant phase come in?

 $E_{dif} = 0.3 E_{des}$

- CO₂:CO behavior is robust up to 12 K
- <12 K: $O + H + CO \rightarrow CO_2 + H$ is dominant
- >12 K: mobile CO + OH \rightarrow CO₂ + H polar CO₂

Depth/temp-dependent cloud models

- Interested in effects of dust temperature
- Balance absorption of ISRF with thermal emission of grains
- Radiation field of Zucconi et al. (2001)
- H₂ and CO photodissociation rates of Lee et al. (1998)
- Run model at positions from edge to center of cloud

Ice column densities vs. extinction

$$A_{V.th}(CO_2) = 4.3 \pm 1.0$$

$$A_{V,th}(CO) = 6.7 \pm 1.6$$

(Whittet+ 2007)

10

(a) $n_H = 2x10^3 \text{ cm}^{-3}$

(b) $n_H = 6x10^3 \text{ cm}^{-3}$

(c) $n_H = 2x 10^4 \text{ cm}^{-3}$

Lower curves = 0.5 Myr Middle curves = 1 Myr **Upper curves = 2 Myr**

(b)

Variation of diffusion barriers

(b)
$$E_{dif} = 0.4 E_{des}$$

(c)
$$E_{dif} = 0.45 E_{des}$$

$$A_{V,th}(H_2O) = 3.2\pm0.1$$

18

15

 $\log N_i \left[cm^{-2} \right]$

(a)

$$A_{V,th}(CO_2) = 4.3 \pm 1.0$$

$$A_{V,th}(CO) = 6.7 \pm 1.6$$

(Whittet+ 2007)

$$H_20 \sim 3$$

18

17

10

A_v (edge-to-edge)

$$CO_2 \sim 3 - 4$$

Collapse models

Free-fall collapse (Spitzer 1978/Brown+1988) $n_H = 3x10^3 \rightarrow 4x10^4 \text{ cm}^{-3}$ $A_V = 2 \rightarrow 10$ $T_{dust} = \sim 18 \rightarrow 8.5 \text{ K}$

High density collapse (10⁷ cm⁻³)

Methanol formation is time-dependent:

Timescale for ice deposition is crucial

Slower ice formation → more hydrogenation of CO to methanol

Conclusions

- CO + OH → CO₂ + H is capable of forming majority of CO₂ in cold dark clouds
- Sharp switch-over at ~12 K explains CO extinction threshold
- CO₂, H₂O thresholds related to photodesorption
- At high temps, CO is mobile, reaction proceeds diffusively
- Require low diffusion barriers (<0.4 E_{des})
- At low temps, O + H + CO gives CO₂ only H mobility is required
- Polar CO₂ and CH₄ well correlated
- Apolar CO₂ may be formed in highly segregated CO:H₂O mixtures
- Methanol ice is formed efficiently when ice build-up is slow
- Need to treat layer formation and activation barriers accurately