PRISMAS

PRobing InterStellar Molecules with Absorption line Studies

Absorption spectroscopy with Herschel/HIFI and IRAM-PdBI: Promises for ALMA

Maryvonne Gerin

Why Absorption Spectroscopy?

- •Sensitivity limited to continuum sensitivity, access to weak features
- Background sources: from stars/star forming regions to QSOs/distant galaxies
- Direct probe of line opacity => easier analysis of molecule column density
- Comparison over a broad spectral range if the background source structure is understood (eg from cm to IR for star forming regions)
- Less information on spatial structure => need for extended continuum sources.

Molecules detected by absorption spectroscopy

- First detections: CH, CN, CH⁺ (1937 1940)
 - UV / Visible/IR absorption
- •H,H₂, C⁺,C, CO, CH, C₂, C₃, CN, OH, NH, H₃⁺...
- •relatively simple molecules + atoms/ions (Na,Ca..)
- •DIBs ...,? PAH?

Radio absorption :

- •HI, OH, CO, CN, H₂O, H₂S, HCO⁺, CCH, HCN, HNC, CS, NH₃, H₂CO, c-C₃H₂, ...
- From simple to ~ complex species
- Little overlap between radio and visible spectral domains
- Potential tracers of H2, cosmic ray ionization rate,

dissipation of turbulence ...

 $HCN/HCO^{\dagger} \sim 1.3 \ HNC/HCO^{\dagger} \sim 0.4 \ CN/HCO^{\dagger} \sim 11.2 \ HCN/HNC \sim 4.7, \ CN/HNC \sim 22.7 \ CCH/c-C_{_3}H_{_2} \sim 28$

Similar properties as the diffuse matter probed towards high latitude sources (Liszt, Lucas et al.)

Molecules in the diffuse ISM (Liszt, Lucas, Pety)

Table 3. Relative abundances $10^8 \times N()/N(H_2)$.

Species	ζ Oph ¹	Our Work ²	TMC-1 ³	BD-G ⁴
OH	10	10	30	10
CO	480	300	8000	41
HCO+		0.2-0.3	0.8	0.009
C ⁺	26 100			89 100
C	700			720
C_2	3.3			3.7
C_3	0.35			10^{-5}
CH	5.4		2	3.9
CH ⁺	6.3			0.006
C_2H		2.9	5-10	0.4
C_3H_2		0.14	1	
CN	0.54	2.0	3	0.30
HCN	(0.079)	0.30	2	0.007
HNC	(0.016)	0.06	2	
CS		0.25	1	
SO		0.15	0.5	
H ₂ CO		0.40	2	
NH	0.19			0.10
NH_3		0.20	2	

Lower or
Comparable
abundances in
diffuse and dense
gas

HCO⁺ & CCH (c-C₃H₂?) tracers of H₂ in diffuse gas (ubiquitous absorption)

PRISMAS programme: Absorption spectroscopy

- Hydride ground state lines in the submm spectral range
- Excellent sensitivity: reach the same range of column density as visible spectroscopy for molecules in common (eg CH and CH⁺) => probe diffuse and translucent gas with Av few mag in the FIR spectral range.
- 8 sources, 25 Species
- •C CH, ¹³CH, CH⁺, ¹³CH⁺, CH₂C₃
- •N NH, NH₂, NH₃ (o & p), ¹⁵NH₃, ND, NH₂D, NH⁺
- •O $OH^+, H_2\bar{O}^+$ (o & p), $H_3O^+, H_2\bar{O}$ (o & p), $H_2^{18}O, HDO, D_2O$
- F HF, DF
- •CI HCI, HCI⁺

SH+

Hydrides

- built in the first chemical steps starting from atomic gas

- at the root of interstellar chemistry

- Diagnostics of physical / chemical processes

Godard et al. 2009

Molecular hydrogen tracers

Visible/UV spectra CH scales with H_2 (CH/ H_2 ~ 3.5 10^{-8})

Sheffer et al 2008

New tracers of H_2 in the submillimeter: Hydrogen fluoride (HF) & CH

- Fluorine reacts with H₂, making HF
- (Neufeld et al)
- = > HF uses all the gas phase F
- => HF reveals H₂
- => HF is present as soon as H₂ is present, even in clouds with no detectable CO or H₂O.
- => T(HF) > T(p-H₂O)

HF/H₂ ~ 1 - 3 x 10⁻⁸ (F/H=1.8 x 10⁻⁸)
 N(HF): 1 - 70 x 10¹² cm⁻²
 Sonnentrucker, Neufeld et al (A&A 521)

CH

- •CH ground state triplet at 532 & 536 GHz.
- Lines not saturated but complex profiles
- Combination of emission & absorption
- N(CH) ~ few 10¹⁴ cm⁻²
- •CH & HF consistent with $CH/H_2 \sim 3.5$ 10⁻⁸ derived from UV/visible
- т(CH) ~ $N(H_2)/10^{21} cm^{-2}$

CH: relation with other molecules: linear scaling => constant abundance ratio

•Well defined trends & deviations in narrow velocity intervals

- CCH/CH ~ 0.6 1.2
- CN/CH ~ 0.5 1

HCO⁺/CH ~
 0.04 - 0.08

CH: relation with other molecules

Cosmic rays ionization rate

Different models for the propagation of cosmic rays and for their energy spectrum.

is expected to decrease with increasing column density of matter. Local variations?

Oxygen hydrides :OH+, H₂O+, H₃O+

- o- H_2O^+ at 1.115 THz => Strong absorption in diffuse ISM and in outflows associated with massive YSO
- p- H_2O^+ : weaker lines 607, 633 GHz

Gerin et al, Neufeld et al, Ossenkopf et al, Wyrowski et al, Benz et al ...

OH* 971 6Hz

- OH[†] and H₂O[†] are not well correlated with CH.
- OH⁺ and H₂O⁺ trace a phase with a small fraction of
 H in H₂

Oxygen hydrides: OH+, H2O+, H3O+

- OH⁺/H₂O⁺ > 4
- ⇒ OH⁺ mostly in atomic gas with a small fraction of H₂
 (< 10%)
- => Analytic expression

$$n(OH^+)/n(H_2O^+) = 0.64 + 0.12 (T/300K)^{-0.5}/f(H_2)$$

 $OH^{+}/H \sim 3 \times 10^{-8}$ $H_{2}O^{+}/H \sim 3 \times 10^{-9}$

- O+ formed by charge transfer between O and H⁺
- => OH^+ & H_2O^+ sensitive to ζ , the ionization rate due to cosmic rays $\zeta(H) = 0.6 2.4 \ 10^{-16} \ s^{-1}$

Comparison with H_3^*

H₃ absorption from diffuse gas

High ionization rate

 $\zeta > 10(-16) \text{ s-1}$

(Indriolo et al 2007, 2009)

CH+: a probe of energetic events dissipation of turbulence

 CH+ shows strong absorption, reaching saturation

- CH+ 835 / 831 GHz
- Falgarone

- use ¹³CH+
- Agreement with
 ¹³CH⁺ data
 from CSO
 (Falgarone in prep).
- Absorption with no CH, no HCO⁺ counterpart
- $N(CH^+) > 3 \times 10^{14}$ cm⁻²

SH* another tracer of the dissipation of turbulence!

- Detection in the SgrB2
 I.o.s with APEX
 (Menten et al)
- SH⁺ produced by the reaction S⁺ + H₂ that has E > 4000K
- CH⁺ & SH⁺
 complementary
 diagnostics

Godard, Falgarone in preparation

ISM Structure: IRAM-PdBI observations

- Set-up with HCO⁺, H¹³CO⁺, CCH, HCN, SiO & HCO simultaneously, 40 kHz.
- W51, conf D, 2 field mosaic: ~ 5" beam

Velocity structure

3 velocity components at 5, 6 & 13 km/s

Similar profiles over the mapped area

Comparison with

≠ beams ~ OK

Perspectives for ALMA: local universe

- Imaging of background sources => spatial structure,
 down to small scales
- Systematic surveys of background sources => characterization of the diffuse ISM (mass, H2 content, energetics, dynamics)
- Very weak lines/ Isotopologues
 - 1/ abundance gradients and metallicity
 - 2/ test of chemical routes : eg origin of CCH by comparison of C13CH and 13CCH ? (asymmetry in
 - TMC1 Sakai et al)

Perspectives for ALMA: distant universe

- Molecular lines offer sensitive probes of ISM content: gas mass, gas density, energetics, ionization rate, ionization fraction, etc.
- Molecule excitation → CMB if diffuse gas
- new spectral lines => new possibilities of testing possible drifts of fundamental constants (eg comparison of NH3 rotational and inversion lines is sensitive to me/mp Henkel et al 2010)

Interesting lines for absorption

Z = 0

Hydrides: H_2S , $p-NH_2$, $p-H_2O^{\dagger}$, HCI, SH^{\dagger} , $13CH^{\dagger}$, HDO, OH^{\dagger}

Other interesting absorption HCO^{+} , HOC^{+} CN, CCH, $c-C_{3}H_{2}$, HCN, HNC, $H_{2}CO$, CS, SO, etc

High redshift (z >0.4)
More hydride lines: CH, H2O,NH3, HCl, CH+, NH,
NH2,OH+, H2O+, H3O+, HF

