Science with EoR Arrays A Case Study Colin J. Lonsdale MIT Haystack Observatory ## Purpose of Talk ### HERA has multiple attributes: - Small, autonomous experiment(s) now - Larger merged project later - Driven by killer application, single science goal - Flexible technology capable of broad science Useful case study for how we design, market, evaluate and fund projects of different types and scales ### What is HERA? - Hydrogen Epoch of Reionization Arrays program - Characterize redshifted 21cm emission/absorption, z=5 to ~15 - Power spectrum and (later) direct imaging - HERA-I (now) - Measure power spectrum, <~10⁴ m² - MWA (512 tiles), PAPER 128, 256, ...? - HERA-II (2nd half of decade) - Precise power spectrum dissection, perhaps imaging? - Merged project, design, ~10⁵ m² - HERA-III (>2020) - Direct imaging - $\sim 10^6 \text{ m}^2$, SKA-low scale ## Design Drivers for HERA - Wide FoV (= small antennas) - Even for EoR imager, power spectrum still vital - Larger arrays, (modestly) longer baselines - More sensitivity allows deeper probe into k-space - Surface brightness sensitivity is key FoM - Early digitization - Minimize need for analog components - Large-N correlation and analysis - Maximize information content as far into data flow as possible ## Design Drivers (secondary) ### Long baselines - Possibly depends on error budget for EoR - Higher precision ionospheric corrections - Better discrete source foreground model ### Frequency resolution - Higher is better (for calibration purposes) - For EoR, depends on nature of signal ### Calibration approach • Different emphases based on behavior of foregrounds ## Murchison Widefield Array | Frequency range | 80-300 MHz (optimized for ~100-200 MHz) | |--------------------------|--| | Number of receptors | 8192 dual polarization dipoles | | Number of tiles | 512 | | Collecting area | ~8000 m ² (at 200 MHz) | | Field of View | ~15°-50° (1000 deg² at 200 MHz) | | Configuration | Core array ~1.5 km diameter (95%, 3.4') + extended array ~3 km diameter (5%, 1.7') | | Bandwidth | 220 MHz (Sampled); 31 MHz (Processed) | | # Spectral channels | 768 (3072) | | Temporal resolution | 8 sec (0.5 sec) | | Polarization | Full Stokes | | Point source sensitivity | 20mJy in 1 sec (32 MHz, 200 MHz) 0.34mJy in 1 hr | | Multi-beam capability | 32, single polarization | | Number of baselines | 130816 (VLA: 351, GMRT: 435) | ## Murchison Widefield Array | Frequency range | 80-300 MHz (optimized for ~100-200 MHz) | |--------------------------|--| | Number of receptors | 8192 dual polarization dipoles | | Number of tiles | 512 | | Collecting area | ~8000 m ² (at 200 MHz) | | Field of View | ~15°-50° (1000 deg² at 200 MHz) | | Configuration | Core array ~1.5 km diameter (95%, 3.4') + extended array ~3 km diameter (5%, 1.7') | | Bandwidth | 220 MHz (Sampled); 31 MHz (Processed) | | # Spectral channels | 768 (3072) | | Temporal resolution | 8 sec (0.5 sec) | | Polarization | Full Stokes | | Point source sensitivity | 20mJy in 1 sec (32 MHz, 200 MHz) 0.34mJy in 1 hr | | Multi-beam capability | 32, single polarization | | Number of baselines | 130816 (VLA: 351, GMRT: 435) | ## Complementarity #### MWA • Large-N architecture, aggressive calibration strategy #### PAPER • Optimized antenna properties, staged development ### LOFAR • Industrial scale, facility model, long baseline imaging ## Complementarity ### Next generation low frequency instruments: - High performance, low cost dipoles (all sky) - Per-dipole digitization (minimize analog, preserve FoV) - Massive DSP capacity, full band, full correlation (cheap silicon) - Flexible, hemispheric calibration (optimal use of information) # Details require comparisons using data But basics look secure ## Solar and Heliospheric Science ## Heliospheric Propagation - Interplanetary scintillation - High sensitivity + wide field of view - Many IPS sources simultaneously = huge improvement - Detailed mapping of IPM density/turbulence - Faraday rotation - High sensitivity + wide field of view - Many background polarized sources measured at once - Detailed mapping of density x B-field new capability - Improved space weather prediction capability ### Ionospheric Research - Rich phenomenology - Before we even look with HERA instruments ... - Exquisite sensitivity - Precision: milli-TEC units - Extraordinary spatial resolution - Phase gradients - Faraday rotation - Scintillation and resolution on the ground - 3D tomography possible - Currently in progress @LOFAR - Byproduct of normal operation | | | | 11/23 | | | | | |---------------------------|---------------------------------|-----------------------------|--|---|---|---|---| | Phenomen
on | Time
scale | Spatial
scale | Amplitude | Height | Frequency
of
occurrence | Expected
RM/FR
(rad/m², °
at 150
MHz) | Remarks | | Medium
Scale
TIDs | Vel=100-
300 m/s,
1000s | 100-300
km,
20°-60° | ~1-5 % of
the
backgroun
d TEC | ~300
km | Daily | 5x10 ⁻² ,
~11° | 1 Based
on GPS
measure
ments | | | Vel=100m
/s, 2000s | | 0.1 - 1
TECU | | Daily | 0.01-0.1,
2.3° - 23° | 2 Based
on radio
interfero
metry | | Large
Scale
TIDs | Vel=300-
1000 m/s,
~3000s | 1000-
3000 km,
> 180° | ~5-10 %
of the
backgroun
d TEC | ~300
km | few times a
month | 8x10 ⁻² ,
~18° | 3 | | Spread F | 11 | 50-100
km | depletions
of ~0.1
ambient | ~300
km | Common
except
during June
solstice | | 4 | | Sporadic-
E | few to
many
hours | Patchy,
200-300
km | ~0.05
TECU | ~100
km | Seasonal,~
1/wk
during the
season | 6x10 ⁻³ ,
~1.4° | 5 | | SEDs | Many
minutes to
hours | 200-300
km | Gradients
of few
TECU/mi
n | From
~250
km to
plasma
sphere | Infrequent
(occur
when Kp >
2) | | 6 | | Solar
cycle | Years | Global | | | Always
present | | 7 | | Day to day
variability | | Global | ~20%
(day), ~33
% (night)
of base
TECU | Mostly
F layer
(200-
500
km) | Daily | 0.2-0.3,
45°-70° | 8 | ### Transient Radio Source Examples #### RRATs - Pulsar-like behaviour, period 3-4 sec - Activity intermittent on timescales of minutes to hours - Ultracool dwarf stars - Pulsar-like periodic pulses - Periods of hours (assumed rotation) - Stellar bursts - Like solar bursts, much stronger - Galactic center transient - Observed a few times, 77 min period - Scintillations, ISM - Giant pulses - GRB prompt emission - Etc ... Figure 3: Time series of the radio emission detected with the VLA from the M9 dwarf TVLM 513-46546. Every 1.958 hours a periodic pulse is detected when extremely bright, beams of radiation originating at the poles sweep Earth when the dwarf rotates. ### MWA transient science packages - All Sky Monitor (ASM) - Search phase space: direction, timing, freq., dispersion measure - Look for single pulse off-on-off - Blind search in primary field of view - Power of two image binning 8s → 16s → . . . → days - Transient Lightcurve Analyzer (TLA) - "Watch list" of single pixel positions - Light curve saved at these positions at full time resolution - $\sim 10^2$ pixels in the FoV - Allows more complex offline analysis of light curves - Short & Long Term Synoptic Surveys - Dedicated, periodic observations of the whole sky - Beamformer Light Curve (BLC) ## Aerial view of 32T ### Aerial view of 32T ## Solar Imaging Lynn Matthews & Divya Oberoi (Haystack) First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype Divya Oberoi¹, Lynn D. Matthews¹, Iver H. Cairns², David Emrich³, Vasili Lobzin², Colin J. Lonsdale¹, Edward H. Morgan⁴, T. Prabu⁵, Harish Vedantham⁵, Randall B. Wayth³, Andrew Williams⁶, Christopher Williams⁴, Stephen M. White⁷ G. Allen⁸, Wayne Arcus³, David Barnes⁹, Leonid Benkevitch¹, Gianni Bernardi¹⁰, Judd D. Bowman¹¹, Frank H. Briggs¹², John D. Bunton⁸, Steve Burns¹³, Roger C. Cappallo¹, M. A. Clark¹⁴, Brian E. Corey¹, M. Dawson¹², David DeBoer^{8,15}, A. De Gans¹², Ludi deSouza⁸, Mark Derome¹, R. G. Edgar^{14,16}, T. Elton⁸, Robert Goeke⁴, M. R. Gopalakrishna⁵, Lincoln J. Greenhill¹⁰, Bryna Hazelton¹⁷, David Herne³, Jacqueline N. Hewitt⁴, P. A. Kamini⁵, David L. Kaplan¹⁸, Justin C. Kasper¹⁰, Rachel Kennedy^{1,15}, Barton B. Kincaid¹, Jonathan Kocz¹², R. Koeing⁸, Errol Kowald¹², Mervyn J. Lynch³, S. Madhavi⁵, Stephen R. McWhirter¹, Daniel A. Mitchell¹⁰, Miguel F. Morales¹⁷, A. Ng⁸, Stephen M. Ord¹⁰, Joseph Pathikulangara⁸, Alan E. E. Rogers¹, Anish Roshi, ^{5,19}, Joseph E. Salah¹, Robert J. Sault²⁰, Antony Schinckel⁸, N. Udaya Shankar⁵, K. S. Srivani⁵, Jamie Stevens⁸, Ravi Subrahmanyan⁵, D. Thakkar², Steven J. Tingay³, J. Tuthill⁸, Annino Vaccarella¹², Mark Waterson^{3,12}, Rachel L. Webster²⁰ and Alan R. Whitney¹ #### Oberoi et al., Ap.J. Letters ## Cen A, Image Fidelity # EoR arrays will deliver (u,v) coverage and imaging *fidelity* the likes of which radio astronomy has never seen before ### Polarized Galactic Emission - WSRT 350 MHz - 6x6 degrees - Gal. latitude +71 - $T_b \sim a \text{ few } K$ - $-1000 \times EoR$ - 150 MHz value unknown ### **Challenging ... BUT:** - Powerful new probe of ISM - Wide frequency range probes different regions, size scales - RM synthesis methods ## Pulsar Astrophysics - Current emphasis on timing, exotic objects - Stable millisecond pulsars, timing network - Strong field tests of GR (BH-NS binary, ...) - Many mysteries remain in pulsar astrophysics - Complex emitting regions - Dynamic behaviors - EoR arrays can address the astrophysics - Sensitivity, time resolution, v range, polarimetry - Precision multidimensional single-pulse studies ## Pulsar Astrophysics ### Galactic and Extragalactic (GEG) - Radio galaxies & clusters - Faraday tomography & Galactic magnetic field - Radio recombination lines, H II regions, diffuse ISM - Surveys - Magellanic Clouds & nearby galaxies - Supernova remnants, pulsar wind nebulae & cosmic rays - Other topics - Planets - Stars - planetary nebulae - Galactic Centre - pulsars - XRBs ... ### Arrays built for EoR must: - be very sensitive - cover a wide frequency range - have a very wide field of view - achieve high calibration precision ### Arrays built for EoR must: - be very sensitive - cover a wide frequency range - have a very wide field of view - achieve high calibration precision # They have extraordinary potential for **non-EoR** science on a broad front ## Incremental Capabilities/Costs - Frequency resolution - Time resolution Moore's Law - Beamforming - Modest hardware, significant engineering effort - Longer baselines - Somewhat costly in infrastructure - Increased calibration complexity, effort - Wider frequency range - Costly, system impacts, compromises for EoR ## Incremental Capabilities/Costs - Frequency resolution - Time resolution Moore's Law Beamforming # How should (can) we assess incremental science per \$? - Somewhat costly in infrastructure - Increased calibration complexity, effort - Wider frequency range - Costly, system impacts, compromises for EoR **▲** Flexible Inherent system property Specialized ## Hypothesis: ## The system often - Overemphasizes "killer apps" - Underemphasizes science breadth - Underemphasizes "discovery space" - Fails to achieve optimum science per dollar