Science with EoR Arrays A Case Study

Colin J. Lonsdale
MIT Haystack Observatory

Purpose of Talk

HERA has multiple attributes:

- Small, autonomous experiment(s) now
- Larger merged project later
- Driven by killer application, single science goal
- Flexible technology capable of broad science

Useful case study for how we design, market, evaluate and fund projects of different types and scales

What is HERA?

- Hydrogen Epoch of Reionization Arrays program
 - Characterize redshifted 21cm emission/absorption, z=5 to ~15
 - Power spectrum and (later) direct imaging
- HERA-I (now)
 - Measure power spectrum, <~10⁴ m²
 - MWA (512 tiles), PAPER 128, 256, ...?
- HERA-II (2nd half of decade)
 - Precise power spectrum dissection, perhaps imaging?
 - Merged project, design, ~10⁵ m²
- HERA-III (>2020)
 - Direct imaging
 - $\sim 10^6 \text{ m}^2$, SKA-low scale

Design Drivers for HERA

- Wide FoV (= small antennas)
 - Even for EoR imager, power spectrum still vital
- Larger arrays, (modestly) longer baselines
 - More sensitivity allows deeper probe into k-space
 - Surface brightness sensitivity is key FoM
- Early digitization
 - Minimize need for analog components
- Large-N correlation and analysis
 - Maximize information content as far into data flow as possible

Design Drivers (secondary)

Long baselines

- Possibly depends on error budget for EoR
- Higher precision ionospheric corrections
- Better discrete source foreground model

Frequency resolution

- Higher is better (for calibration purposes)
- For EoR, depends on nature of signal

Calibration approach

• Different emphases based on behavior of foregrounds

Murchison Widefield Array

Frequency range	80-300 MHz (optimized for ~100-200 MHz)
Number of receptors	8192 dual polarization dipoles
Number of tiles	512
Collecting area	~8000 m ² (at 200 MHz)
Field of View	~15°-50° (1000 deg² at 200 MHz)
Configuration	Core array ~1.5 km diameter (95%, 3.4') + extended array ~3 km diameter (5%, 1.7')
Bandwidth	220 MHz (Sampled); 31 MHz (Processed)
# Spectral channels	768 (3072)
Temporal resolution	8 sec (0.5 sec)
Polarization	Full Stokes
Point source sensitivity	20mJy in 1 sec (32 MHz, 200 MHz) 0.34mJy in 1 hr
Multi-beam capability	32, single polarization
Number of baselines	130816 (VLA: 351, GMRT: 435)

Murchison Widefield Array

Frequency range	80-300 MHz (optimized for ~100-200 MHz)
Number of receptors	8192 dual polarization dipoles
Number of tiles	512
Collecting area	~8000 m ² (at 200 MHz)
Field of View	~15°-50° (1000 deg² at 200 MHz)
Configuration	Core array ~1.5 km diameter (95%, 3.4') + extended array ~3 km diameter (5%, 1.7')
Bandwidth	220 MHz (Sampled); 31 MHz (Processed)
# Spectral channels	768 (3072)
Temporal resolution	8 sec (0.5 sec)
Polarization	Full Stokes
Point source sensitivity	20mJy in 1 sec (32 MHz, 200 MHz) 0.34mJy in 1 hr
Multi-beam capability	32, single polarization
Number of baselines	130816 (VLA: 351, GMRT: 435)

Complementarity

MWA

• Large-N architecture, aggressive calibration strategy

PAPER

• Optimized antenna properties, staged development

LOFAR

• Industrial scale, facility model, long baseline imaging

Complementarity

Next generation low frequency instruments:

- High performance, low cost dipoles (all sky)
- Per-dipole digitization (minimize analog, preserve FoV)
- Massive DSP capacity, full band, full correlation (cheap silicon)
- Flexible, hemispheric calibration (optimal use of information)

Details require comparisons using data But basics look secure

Solar and Heliospheric Science

Heliospheric Propagation

- Interplanetary scintillation
 - High sensitivity + wide field of view
 - Many IPS sources simultaneously = huge improvement
 - Detailed mapping of IPM density/turbulence
- Faraday rotation
 - High sensitivity + wide field of view
 - Many background polarized sources measured at once
 - Detailed mapping of density x B-field new capability
- Improved space weather prediction capability

Ionospheric Research

- Rich phenomenology
 - Before we even look with HERA instruments ...
- Exquisite sensitivity
 - Precision: milli-TEC units
 - Extraordinary spatial resolution
 - Phase gradients
 - Faraday rotation
 - Scintillation and resolution on the ground
- 3D tomography possible
 - Currently in progress @LOFAR
- Byproduct of normal operation

			11/23				
Phenomen on	Time scale	Spatial scale	Amplitude	Height	Frequency of occurrence	Expected RM/FR (rad/m², ° at 150 MHz)	Remarks
Medium Scale TIDs	Vel=100- 300 m/s, 1000s	100-300 km, 20°-60°	~1-5 % of the backgroun d TEC	~300 km	Daily	5x10 ⁻² , ~11°	1 Based on GPS measure ments
	Vel=100m /s, 2000s		0.1 - 1 TECU		Daily	0.01-0.1, 2.3° - 23°	2 Based on radio interfero metry
Large Scale TIDs	Vel=300- 1000 m/s, ~3000s	1000- 3000 km, > 180°	~5-10 % of the backgroun d TEC	~300 km	few times a month	8x10 ⁻² , ~18°	3
Spread F	11	50-100 km	depletions of ~0.1 ambient	~300 km	Common except during June solstice		4
Sporadic- E	few to many hours	Patchy, 200-300 km	~0.05 TECU	~100 km	Seasonal,~ 1/wk during the season	6x10 ⁻³ , ~1.4°	5
SEDs	Many minutes to hours	200-300 km	Gradients of few TECU/mi n	From ~250 km to plasma sphere	Infrequent (occur when Kp > 2)		6
Solar cycle	Years	Global			Always present		7
Day to day variability		Global	~20% (day), ~33 % (night) of base TECU	Mostly F layer (200- 500 km)	Daily	0.2-0.3, 45°-70°	8

Transient Radio Source Examples

RRATs

- Pulsar-like behaviour, period 3-4 sec
- Activity intermittent on timescales of minutes to hours
- Ultracool dwarf stars
 - Pulsar-like periodic pulses
 - Periods of hours (assumed rotation)
- Stellar bursts
 - Like solar bursts, much stronger
- Galactic center transient
 - Observed a few times, 77 min period
- Scintillations, ISM
- Giant pulses
- GRB prompt emission
- Etc ...

Figure 3: Time series of the radio emission detected with the VLA from the M9 dwarf TVLM 513-46546. Every 1.958 hours a periodic pulse is detected when extremely bright, beams of radiation originating at the poles sweep Earth when the dwarf rotates.

MWA transient science packages

- All Sky Monitor (ASM)
 - Search phase space: direction, timing, freq., dispersion measure
 - Look for single pulse off-on-off
 - Blind search in primary field of view
 - Power of two image binning 8s → 16s → . . . → days
- Transient Lightcurve Analyzer (TLA)
 - "Watch list" of single pixel positions
 - Light curve saved at these positions at full time resolution
 - $\sim 10^2$ pixels in the FoV
 - Allows more complex offline analysis of light curves
- Short & Long Term Synoptic Surveys
 - Dedicated, periodic observations of the whole sky
- Beamformer Light Curve (BLC)

Aerial view of 32T

Aerial view of 32T

Solar Imaging

Lynn Matthews & Divya Oberoi (Haystack)

First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype

Divya Oberoi¹, Lynn D. Matthews¹, Iver H. Cairns², David Emrich³, Vasili Lobzin², Colin J. Lonsdale¹, Edward H. Morgan⁴, T. Prabu⁵, Harish Vedantham⁵, Randall B. Wayth³, Andrew Williams⁶, Christopher Williams⁴, Stephen M. White⁷ G. Allen⁸, Wayne Arcus³, David Barnes⁹, Leonid Benkevitch¹, Gianni Bernardi¹⁰, Judd D. Bowman¹¹, Frank H. Briggs¹², John D. Bunton⁸, Steve Burns¹³, Roger C. Cappallo¹, M. A. Clark¹⁴, Brian E. Corey¹, M. Dawson¹², David DeBoer^{8,15}, A. De Gans¹², Ludi deSouza⁸, Mark Derome¹, R. G. Edgar^{14,16}, T. Elton⁸, Robert Goeke⁴, M. R. Gopalakrishna⁵, Lincoln J. Greenhill¹⁰, Bryna Hazelton¹⁷, David Herne³, Jacqueline N. Hewitt⁴, P. A. Kamini⁵, David L. Kaplan¹⁸, Justin C. Kasper¹⁰, Rachel Kennedy^{1,15}, Barton B. Kincaid¹, Jonathan Kocz¹², R. Koeing⁸, Errol Kowald¹², Mervyn J. Lynch³, S. Madhavi⁵, Stephen R. McWhirter¹, Daniel A. Mitchell¹⁰, Miguel F. Morales¹⁷, A. Ng⁸, Stephen M. Ord¹⁰, Joseph Pathikulangara⁸, Alan E. E. Rogers¹, Anish Roshi, ^{5,19}, Joseph E. Salah¹, Robert J. Sault²⁰, Antony Schinckel⁸, N. Udaya Shankar⁵, K. S. Srivani⁵, Jamie Stevens⁸, Ravi Subrahmanyan⁵, D. Thakkar², Steven J. Tingay³, J. Tuthill⁸, Annino Vaccarella¹², Mark Waterson^{3,12}, Rachel L. Webster²⁰ and Alan R. Whitney¹

Oberoi et al., Ap.J. Letters

Cen A, Image Fidelity

EoR arrays will deliver (u,v) coverage and imaging *fidelity* the likes of which radio astronomy has never seen before

Polarized Galactic Emission

- WSRT 350 MHz
- 6x6 degrees
- Gal. latitude +71
- $T_b \sim a \text{ few } K$
 - $-1000 \times EoR$
 - 150 MHz value unknown

Challenging ... BUT:

- Powerful new probe of ISM
- Wide frequency range probes different regions, size scales
- RM synthesis methods

Pulsar Astrophysics

- Current emphasis on timing, exotic objects
 - Stable millisecond pulsars, timing network
 - Strong field tests of GR (BH-NS binary, ...)
- Many mysteries remain in pulsar astrophysics
 - Complex emitting regions
 - Dynamic behaviors
- EoR arrays can address the astrophysics
 - Sensitivity, time resolution, v range, polarimetry
 - Precision multidimensional single-pulse studies

Pulsar Astrophysics

Galactic and Extragalactic (GEG)

- Radio galaxies & clusters
- Faraday tomography & Galactic magnetic field
- Radio recombination lines, H II regions, diffuse ISM
- Surveys
- Magellanic Clouds & nearby galaxies
- Supernova remnants, pulsar wind nebulae & cosmic rays
- Other topics
 - Planets
 - Stars
 - planetary nebulae
 - Galactic Centre
 - pulsars
 - XRBs ...

Arrays built for EoR must:

- be very sensitive
- cover a wide frequency range
- have a very wide field of view
- achieve high calibration precision

Arrays built for EoR must:

- be very sensitive
- cover a wide frequency range
- have a very wide field of view
- achieve high calibration precision

They have extraordinary potential for **non-EoR** science on a broad front

Incremental Capabilities/Costs

- Frequency resolution
- Time resolution

Moore's Law

- Beamforming
 - Modest hardware, significant engineering effort
- Longer baselines
 - Somewhat costly in infrastructure
 - Increased calibration complexity, effort
- Wider frequency range
 - Costly, system impacts, compromises for EoR

Incremental Capabilities/Costs

- Frequency resolution
- Time resolution

Moore's Law

Beamforming

How should (can) we assess incremental science per \$?

- Somewhat costly in infrastructure
- Increased calibration complexity, effort
- Wider frequency range
 - Costly, system impacts, compromises for EoR

▲ Flexible Inherent system property

Specialized

Hypothesis:

The system often

- Overemphasizes "killer apps"
- Underemphasizes science breadth
- Underemphasizes "discovery space"
- Fails to achieve optimum science per dollar