Intermediate-Mass Black Holes in the Local Universe

Lessons from G1

Joan Wrobel (NRAO)
Jenny Greene (UTexas)
Luis Ho (Carnegie)
Range of Black Hole Masses M_{BH}

- Stellar mass black holes $M_{\text{BH}} < 40 \, M_\odot$
 - Silverman & Filippenko (2008)
- Massive black holes $M_{\text{BH}} > 10^6 \, M_\odot$
 - Megamasers (Lo 2005)
 - Stellar dynamics
 - Ferrarese & Ford (2005) CfAz
 - Resolve sphere of influence
 - Access $M_{\text{BH}} \sim 10^5 \, M_\odot$ with 30m
- Intermediate-mass black holes (IMBHs)
 - $40 \, M_\odot < M_{\text{BH}} < 10^5 \, M_\odot$
 - Almost no access via stellar dynamics beyond Local Group
 - Hindrance to demographic studies
Importance of Intermediate-Mass Black Holes

- Predictions of gravity wave signals for Laser Interferometer Space Antenna (Bender & Pollack 2003)
- Formation of seed black holes
 - Volonteri et al. (2008), Bellovary et al. (2010)
- Simulations of gravity wave recoil
 - Holley-Bockelmann et al. (2008)
Candidate Intermediate-Mass Black Holes

Globular cluster ω Cen at distance $d = 5$ kpc

- Most luminous globular cluster in Milky Way
- Stellar dynamics via HST and VLT
 - Noyola et al. (2010)
 - Radial velocities
 - $M_{\text{BH}} \sim 4.7 \times 10^4 M_\odot$
 - Van der Marel & Anderson (2010)
 - Radial velocities and proper motions
 - $M_{\text{BH}} < 1.2 \times 10^4 M_\odot$
 - Origin of differences unclear
Candidate Intermediate-Mass Black Holes
Globular cluster G1 at d = 780 kpc

• Amongst the most luminous globular clusters in M31
• Stellar dynamics via HST and Keck
 – Gebhardt et al. (2002, 2005)
 • Radial velocities
 • \(M_{BH} \sim 1.8 \times 10^4 M_\odot \)
• X-ray counterpart via XMM and Chandra
 – Pooley & Rappaport (2006), Kong et al. (2010)
 – \(L_X \sim 2 \times 10^{36} \) ergs/s
 – Low-mass stellar binary? Viable
 – Accretion onto candidate IMBH? Viable
Candidate Intermediate-Mass Black Holes
Globular cluster G1 at $d = 780$ kpc

- Radio counterpart via NRAO VLA (Ulvestad et al. 2007)
 - Observed flux density $S \sim 30 \, \mu$Jy
 - Stellar binary with $M_{\text{BH}} \sim 10 \, M_\odot$?
 - Not viable: predicted S too low
 - IMBH with $M_{\text{BH}} \sim 1.8 \times 10^4 \, M_\odot$?
 - Viable: predicted S about right
- Planetary wind nebula?
 - Unlikely in an old stellar population but can test via VLBI

\[
S_{5 \text{ GHz}} = 52 \left(\frac{L_X}{10^{36} \text{ ergs s}^{-1}} \right)^{0.6} \left(\frac{M_{\text{BH}}}{10^4 \, M_\odot} \right)^{0.78} \times \left(\frac{d}{600 \, \text{kpc}} \right)^{-2} \, \mu\text{Jy.} \quad \pm \text{factor of 8}
\]
Candidate Intermediate-Mass Black Holes
Globular clusters at d = 4 – 40 Mpc

- 1000s localized via HST
 - Jordan, Humphrey, Masters …
 - Eg, globular clusters in M87
- 100s have X-ray counterparts
 - Kundu, Sarazin, Kim, Sivakoff …
 - Eg, M87 $L_X > 5 \times 10^{38}$ ergs/s
- X-ray sources reside preferentially in the most luminous globular clusters
- Mainly low-mass stellar binaries
- But could some be G1 analogs?
 - $M_{BH} \sim 1.8 \times 10^4 M_\odot$

\[S_{\text{GHz}} = 52 \left(\frac{L_X}{10^{36} \text{ ergs s}^{-1}} \right)^{0.6} \left(\frac{M_{BH}}{10^4 M_\odot} \right)^{0.78} \times \left(\frac{d}{600 \text{ kpc}} \right)^{-2} \mu\text{Jy} \]
Candidate Intermediate-Mass Black Holes
Globular clusters in NGC 4697 at d = 11 Mpc

- Elliptical galaxy studied via HST and Chandra (Sivakoff et al. 2008)
- 34 globular clusters with X-ray counterparts
 - g ~ 19 – 25 mag
 - $L_X > 10^{37}$ ergs/s
- VLA 8.5 GHz (Wrobel et al. 2008)
- Resolution 0.3 arcsec = 16 pc
- G1 g ~ 20 mag
- 18 clusters with g ~ 19 – 22 mag
Candidate Intermediate-Mass Black Holes
Globular clusters in NGC 4697 at d = 11 Mpc

- $M_{\text{BH}} \sim 1.8 \times 10^4 M_\odot$ like G1
- L_X from Chandra
- Predict radio flux density S

$$S_{s\text{ GHz}} = 52 \left(\frac{L_X}{10^{36} \text{ ergs s}^{-1}} \right)^{0.6} \left(\frac{M_{\text{BH}}}{10^4 M_\odot} \right)^{0.78} \times \left(\frac{d}{600 \text{ kpc}} \right)^{-2} \mu\text{Jy.}$$

- Predicted $S \sim 1 - 7 \mu\text{Jy}$
- Each S uncertain by \pm factor of 8
- Detections of G1 analogs feasible with NRAO Expanded VLA

Globular Clusters in NGC 4697 with $g \sim 19-22$
- VLA 3σ upper limits at 8.5 GHz
- EVLA 3σ sensitivity at 6 GHz in 2012
Summary

Intermediate-mass black holes (IMBHs) have masses $40 \, M_\odot < M_{BH} < 10^5 \, M_\odot$

Demographics key for gravity waves, seed black holes, recoiling black holes

Almost no access via stellar dynamics beyond Local Group, even with 30m

Radio and X-ray properties of G1 consistent with $M_{BH} \sim 1.8 \times 10^4 \, M_\odot$

EVLA detections of G1 analogs beyond Local Group are feasible