

Rachel Osten
Space Telescope Science Institute
March 8, 2011

An attempt to cover 4 decades of wavelength in (<)20 minutes. . . .

- 🗆 focus on two key decadal survey questions:
 - □ how do rotation and magnetic fields affect stars?
 - (planetary habitability)
 - □ tíme-domain astronomy
- D key techniques/advances:
 - U wide bandwidths: drifting radio bursts
 - O time variability
 - D sensitivity improvements

cool half of HR
diagram at radio
wavelengths
dominated by
nonthermal
processes

"If the Sun did not have a magnetic field, it would be as boring a star as most astronomers think it is" -- R. B. Leighton

Observations of particle acceleration in stellar coronae constrain the importance of rotation and magnetic fields

- ocherent and incoherent processes at work
 - □ plasma emission: v_p × √ n_e
 - □ cyclotron maser emission: VB ∝B
 - □ gyrosynchrotron emission: sv_B, s 10-100
 - 🗆 synchrotron emission: s large

Stellar Radio Transients

Osten et al. 2010, "GRB" on a flare star at 5 pc

What is the radio equivalent of this?

gyrosynchrotron emission associated with x-ray flares

Swift triggers on hard X-ray emission from transient sources with quick reaction times

need commensurate radio transient capability

impact on habitability

Bastian & Beasley 1998

drifting radio bursts

key measurable quantities:

- durations
- bandwidths
- drift rates

Osten & Bastian 2006

Time (seconds since scan start)

use these quantities to infer physical conditions in source, emission mechanism (exciter speed, mag. field gradients)

Osten & Bastian 2008

Magnetic structures are seen on substellar objects -- ultracool dwarfs (UCDs)

0.1 M_{sun} , 0.1 R_{sun} star with $P_{rot} \sim 2$ hours, showing pulsating radio bursts

Hallinan et al. 2007

magnetic field of strength 3 kG produces maser emission at 8.4 GHz = 3.6 cm

brown dwarf is behaving more like a planet than a star

importance of mm variability

- mm emission generally ascribed to dust emission from disks
- □ to date, a few YSOs have illustrated spectacular mm flares
- appears to be periodic, interacting magnetospheres
- ☐ attributed to synchrotron emission based on spectrum and timescales
- does this only affect binaries? what is the impact on SED modelling, particle environment for forming planets?

V773 Tau; Massi et al. 2006 mm flares with a periodicity on the order of the orbital period, ~52 days

importance of mm variability

Interacting magnetosphere scenario also seen in DQ Tau; Salter et al. 2010

with ALMA's sensitivity, can detect stellar chromospheres at mm wavelengths

- magnetically heated regions above the stellar surface,
 corresponding to temperatures in excess of Teff
- expect to see optically thick thermal bremsstrahlung emission in the mm wavelength range
- $\tau=1$ @7000 K at 3mm (with density enhancements the $\tau=1$ layer shifts to larger heights, hence higher T)
- integrated brightness reveals information about stellar surface coverage with dense (active) chromospheric regions

Mass Loss in Cool Stars

Detecting mass loss in cool stars on the main sequence has proved to be a thorny issue -- MS cool stellar winds are feeble ((dM/dt)₀ is ~1e-14 M ₀/yr)

- expect both steady and variable mass loss, in analogy with Sun.
 - scattered measurements of X-ray absorption enhancements during stellar flares have been interpreted as CMEs. few and far between (esp. given number of stellar X-ray flares)
 - charge exchange X-ray emission provides upper limits on mass loss within astrospheres
 - \square enhanced astrospheric absorption in stellar Lyman α profiles
- affects circumstellar environment, can alter the character of planetary atmospheres (viz. Mars)

Low Frequency emission from Stellar CMEs

- solar type II radio bursts: drifting radio bursts with slow frequency drift, produced by MHD shock propagating through the solar corona, radiation at v_p and $2v_p$
- strong association between solar CMEs and type II radio bursts, although still the flare/CME/type II relationship is not fully understood
- expect that coronally active stars, with high flaring rate, should produce type
 bursts -> detectable with e.g.
 LOFAR, MWA, LWA

GBSRBS example (Feb. 13, 2011) of a type 11 burst

- stars capable of unpredictable behavior; expect the unexpected
- 🗆 stellar radio community is small
 - make use of advances in primarily large telescope projects
 - unique resources for information not available at other wavelengths
 - importance of multi-wavelength approach

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

Hamlet Act 1, scene 5, 159–167