

Exploring the Physics of Galaxy Cluster Mergers and AGN Feedback: Prospects with Emerging Centimeter to Meter Wavelength Instruments

Tracy Clarke
Naval Research Laboratory

Galaxy Clusters

- Largest gravitationally bound objects in the Universe
- Few Mpc across
- Contain 100 1000 bound member galaxies
- Hot (10⁷ K) X-ray emitting gas
- Dark matter (~75% mass)
- Central supermassive black hole powers active galactic nucleus (AGN) driven radio jets
- ICM is a reservoir of relativistic electrons embedded in magnetic fields → synchrotron emission

Distant Galaxy Cluster MS1054-0321
Hubble Space Telescope • Wide Field Planetary Camera 2

Decadal Survey Astrophysical Challenges

The Origin of Galaxies & Large Scale Structure

- "How do cosmic structures form and evolve?"
 - ICM shocks and turbulence

Understanding the Cosmic Order

- "How do black holes work and influence their surroundings?"
 - AGN feedback in ICM

Frontiers of Knowledge

- "Why is the Universe Accelerating?"
 - Non-thermal impact on mass proxies

Connection: Low frequency radio interferometry combined with X-ray imaging/spectroscopy provides unique insight.

How Do Cosmic Structures Form and Evolve?

- Clusters form at the intersection of LSS filaments
- ICM is a relativistic electron reservoir (τ_{loss}~ τ_{Universe})
- Shocks and turbulence from mergers accelerate particles and compress magnetic fields
 - Acceleration models include turbulent plasma, shocks, and proton-proton collisions
- Current merger state is traced by peripheral radio relics
 - Fermi-I DSA or adiabatic compression
- Past merger state is traced by central radio halo
 - o Proton-proton collisions *or* turbulence
- ⇒ Synchrotron Key faint, steep spectrum diffuse radio emission is (so far) only seen in merging clusters

Steep Spectrum Tracers of Mergers

- Well known merger system:
 - 1.4 GHz VLA mapped halo (σ=0.02 μJy/□", Clarke & Ensslin 2006)
 - USS relics discovered at 325 MHz with GMRT (σ =0.2 μ Jy/ \square ", van Weeren et al. 2009) and GMRT 153 MHz (σ =5.0 μ Jy/ \square ", Intema et al. submitted)
- USS sources may dominate planned LF surveys allowing us to trace the merger shock locations and map large scale structure formation and evolution

How do BHs Work and Influence their Surroundings?

- ICM cooling via thermal Bremsstrahlung
- Predict massive amounts of gas cool, condense and forms stars (> 100 M_☉/yr)
 - SF rates are 1-10% expected
 - X-ray spectroscopy does not detect gas below ½ - ⅓ <kT>
- AGN feedback is best candidate to solve the 'Cooling Flow Problem'
 - Suppress of star formation and the growth of luminous galaxies
- ⇒ Synchrotron Key low frequency observations can trace steep spectrum emission from past AGN outbursts

Radio History of AGN Feedback

- LF emission fills X-ray tunnel and cavities, e.g. measure repetition timescale of outbursts (~30 Myr), total energy in multiple outbursts (~10x current outburst)
- Need high spatial resolution at low frequencies
- Deep cm and m observations of cool cores will trace the history of AGN energy injection into the ICM to measure AGN physics as well as impact on surroundings

Why is the Universe Accelerating?

THE LANGE OF THE PARTY OF THE P

- Galaxy cluster mass function and its evolution both depend strongly on cosmology
- Clusters play a key role in precision cosmology studies of the dark energy equation of state
- Assumption of hydrostatic equilibrium to convert observables to mass estimates
- Deviations from equilibrium and non-thermal pressure support increase scatter in proxy relations

Tracing Merging Clusters

Predicted redshift distribution

Ferrari et al. (2010)

- Radio halo power appears correlates with host cluster X-ray luminosity
- Current studies probe halos in nearby clusters to L_x~3x10⁴⁴ ergs/s
- Other tracers of the non-thermal cluster component will come from *Fermi*, *NuStar* and *IXO*
- Deep surveys at low frequencies will detect hundreds of halos at z<0.6

GMRT

	151 —	235 —	325 ^{inc}	610 —	1420
Primary Beam (arc min)	186±6	114±5	81 ± 4	43 ± 3	$(24 \pm 2) * (1400/$
Receiver Temperature (TR)	295 [†]	106 [†]	53	60	45
Typical $T_{\rm sky}$ (off galactic plane)	308	99	40	10	4
Typical T _{ground}	12	32	13	32	24
Total System Temperature (K)	615	237	106	102	73
$(T_R + T_{sky} + T_{ground})$					
Antenna Gain (K/Jy/Antenna)	0.33	0.33	0.32	0.32	0.22
Synthesised Beam (arcsec)					
Whole Array	20	13	9	5	2
Central Square	420	270	200	100	40
Largest Detectable Source(arcmin)	68	44	32	17	7
Usable Frequency Range (MHz)					
Observatory default	150 to 156	236 to 244	305 to 345	580 to 640	1000 to 1450
Range allowed by electronics	130 to 190	230 to 250	305 to 360	570 to 650	1000 to 1450
Fudge Factor(actual to estimated time)					
For Short Observations	10	5	2	2	2
For Long Observations#	5	2	2	1	1
Best rms sensitivies achieved					
so far as known to us (mJy)	0.7	0.25	0.04	0.02	0.03
Typical Dynamic Ranges	> 1500	> 1500	>1500	>2000	>2000

TIFR GMRT Sky Survey

Abell 262

Clarke et al. (2009)

- TGSS at 150 MHz
 - \circ $\delta > -30$
 - \circ σ ~9 mJy/bm
 - 0~20"

EVLA Low Band Upgrade

Abell 521 with EVLA LB

Additional sensitivity and resolution possible with LWA tied into EVLA WIDAR or as stand alone 53 station array

LOFAR

Superterp

- LOFAR Low
 - 10 90 MHz
 - 96/station
- LOFAR High
 - 110 250 MHz
 - 48/station

Abell 2256 with LOFAR

Australian SKA Pathfinder

- 36 x 12 m antennas
- 6 in 2011, complete 2013
- 700 MHz -> 1800 MHz
 - 300 MHz instantaneous
- 30 independent beams

Evolutionary Map of the Universe

- Australian SKA Prototype (ASKAP) survey EMU:
 - o 1130-1430 MHz
 - o ~10 µJy rms
 - o δ < 30°
- Expect more than 300 halos and a similar number of relics
- Trace evolution of AGN across the Universe

Square Kilometer Array

