Diffuse HI and the Evolution of Galaxies: The New Frontier

Felix J. Lockman NRAO Green Bank, WV

GBT Collaborations

- Caltech -- CCB
- Univ. Maryland -- Zspectrometer
- Univ. Penn, NIST -- MUSTANG
- UC Berkeley, WVU -- GUPPI
- UC Berkeley -- New Spectrometer
- BYU -- FLAG
- Nanograv
- Caltech, Stanford -- mm-cameras

We're faced with fundamental questions about the origin, growth and evolution of galaxies like the Milky Way.

MILKY WAY History of star formation Chemical Evolution Structure and stability of the disk The warp

Dynamics of the local group History of the Magellanic clouds and effects on the Milky Way Mass and energy flows between the disk, halo, group medium, IGM Connections between dark and luminous matter Fossil record of galaxy formation

All need sensitive HI observations

Hydrogen is abundant and observable

Key to understanding the growth and evolution of galaxies

UV absorption lines H+ emission lines 21cm in the radio

<u>CONCLUSIONS</u>

There is a lot to learn from the largely unexplored N_{HI} << 10¹⁹ cm⁻²
Current facilities can produce exciting results
Modest investments give significant improvements
The SKA promises even more, but...
No Bed of Procrustes for U.S. Astronomy

We know how to make accurate $N_{\mbox{\scriptsize HI}}$ measurements

Observing the 21cm line in emission

$$\sigma_T = \frac{20}{f \ (25000 \times 2 \times t_s)^{\frac{1}{2}}} \quad (K)$$

$$\sigma_T = 90 \ f^{-1} \ t_s^{-\frac{1}{2}} \ (\text{mK})$$

$$T_b = 2.1 \ \frac{N_{\rm HI}}{10^{20}} \ \Omega \ {\rm K}$$

A 3σ detection takes

$$t = 1.6 \times 10^{-2} f^{-2} \Omega^{-2} N_{\text{HI20}}^{-2} \text{ (s)}$$

T<<1 5 km/s channel width 3σ detection ΔV=25 km/s no bandpass issues f≤1 is surface brightness efficiency Ω≤1 is beam dilution

Surface brightness efficiency factors

Instrument	f
GBT	~
Arecibo	~
EVLA-D	~10-2
EVLA-C	~10-3
EVLA-B	~10-4
ATA	~10-2
ASKAP	~10-3

Deep 21cm Surveys

from Popping (2010), PhD thesis, University of Groningen,

H I SURVEYS

Survey	Beam [']	Area [deg ²]	δv [km s ⁻¹]	rms(Flux) ^a	$rms(N_{HI})^b$	Ref	<u>4σ < 10¹</u>
AHISS	3.3	13	16	0.7	3.5e17	с	
ADBS	3.3	430	34	3.3	1.7e18	d	
WSRT WVF	49	1800	17	18	4.1e16	e	←
Nancay CVn	4×20	800	10	7.5	5.2e17	f	
HIPASS	15.5	30000	18	13	3.0e17	8	
HI-ZOA	15.5	1840	18	13	3.0e17	h	
HIDEEP	15.5	32	18	3.2	7.4e16	i	←
HIJASS	12	1115	18	13	5.0e17	j	
J-Virgo	12	32	18	4	1.5e17	k	←
AGES	3.5	200	11	0.7	3.2e17	1	
ALFALFA	3.5	7074	11	1.7	7.7e17	m	

Table 1.1: Comparison of Blind H1 Surveys: (*a*): mJy beam⁻¹ at 18 km s⁻¹, (*b*): cm⁻² over 18 km s⁻¹, (*c*): Zwaan et al. (1997), (*d*): Rosenberg & Schneider (2000), (*e*): Braun et al. (2003), (*f*): Kraan-Korteweg et al. (1999), (*g*): Barnes et al. (2001), (*h*): Henning et al. (2000), (*i*): Minchin et al. (2003), (*j*): Lang et al. (2003), (*k*): Davies et al. (2004), (*l*): Minchin et al. (2007), (*m*): Giovanelli et al. (2007)

15

The Plane of a Spiral Galaxy

$\begin{array}{l} {\sf N}_{{\sf HI}} \geq 10^{22} \\ {\sf T}_{{\sf b}}{=}200 \ {\sf K} \\ {\sf t} \approx 10^{-6} \ {\sf f}^{-2} \ {\sf s} \end{array}$

Dickey & Lockman 1990, ARAA, 28, 215

Through the spiral arms of galaxies

$$\begin{split} N_{\rm HI} &= 10^{21.5} \\ T_{\rm b} {=} 65 \ {\rm K} \\ t \approx 2 {\times} 10^{-5} \ {\rm f}^{-2} \ {\rm s} \end{split}$$

M31 WSRT + GBT

Vertically through the disk at R₀

$N_{HI} = 10^{20.5}$ $T_b = 6.5 \text{ K}$ $t \approx 2 \times 10^{-3} \text{ f}^{-2} \text{ s}$

Dickey & Lockman 1990, ARAA, 28, 215

Brighter parts of high-velocity clouds

$N_{HI} = 10^{20}$ $T_b = 2 K$ $t \approx 2 \times 10^{-2} f^{-2} s$

Accretion of satellites, fountain, or cold flow?

From Bart Wakker

Brighter parts of high-velocity clouds

 $N_{HI} = 10^{20}$ $T_b = 2 K$ $t \approx 2 \times 10^{-2} f^{-2} s$

> dist = 12.4 \pm 1.3 kpc R = 7.6 \pm 1.0 kpc z = -2.2 kpc M_{HI} > 10⁶ M_☉ M_{H+} \approx 3×10⁶ M_☉ size \approx 3 × 1 kpc [N\H] = 0.14 - 0.44

> V_{t0t}≈300 km/s Will impact the disk in 30 Myr

Lockman et al. 2008, ApJ, 679, L21 Hill, Haffner & Reynolds 2009, ApJ, 703, 1832

The Smith Cloud: Dark Matter Confinement?

Nichols & Bland-Hawthorn 2009, ApJ, 707, 1642

$N_{HI} = 10^{20}$ $T_b = 2 K$ $t \approx 2 \times 10^{-2} f^{-2} s$

The ragged edges of HI disks

 $N_{HI} = 10^{19.5}$ $T_b = 0.6 \text{ K}$ $t \approx 0.2 \text{ f}^{-2} \text{ s}$

GBT observations of The Milky Way Warp N_{HI}=10^{19.5} at 20° latitude

2.5

2

1

0.5

0

1.5 🔿

The ragged edges of HI disks

HALOGAS WSRT Survey Heald et al. 2011, in press 15" resolution to N_{HI} limit few 10¹⁹ 120 hours per galaxy
$$\begin{split} N_{\text{HI}} &= 10^{19} \\ T_{\text{b}} &= 0.2 \text{ K} \\ t &\approx 2 \text{ f}^{-2} \text{ s} \end{split}$$

G. Heald et al .: The WSRT HALOGAS survey. I.

Fig. 1. Overview of the HALOGAS observations of UGC 2082. The *left panel* shows the HI total intensity overlaid on the DSS *R*-band image. The HI contours originate from the 30"-tapered image, begin at $N_{\rm HI} = 1.0 \times 10^{19} \,\mathrm{cm}^{-2}$ and increase by powers of two. The straight line shows the orientation of the PV slice shown in Fig. 2. The *right panel* shows an overlay of several channels in the lowest resolution data cube, all at a level of 0.9 mJy beam⁻¹ ($\approx 3.75\sigma$). The contours are separated by 12.4 km s⁻¹, begin at 593 km s⁻¹ (dark blue) and range upward to 815 km s⁻¹ (dark red). Both panels show the same area of the sky. The beam size of the HI data is shown in the *lower left* corners of the *left panel*.

The Milky Way disk-halo transition

Pidopryhora, Lockman & Shields 2007, ApJ, 656, 928

$N_{HI} = 10^{19}$ $T_b = 0.2 \text{ K}$ $t \approx 2 \text{ f}^{-2} \text{ s}$

The Milky Way disk-halo transition

Pidopryhora, Lockman & Shields 2007, ApJ, 656, 928

$N_{HI} = 10^{19}$ $T_b = 0.2 \text{ K}$ $t \approx 2 \text{ f}^{-2} \text{ s}$

The Ophiucus superbubble: a starburst in the inner Galaxy?

$N_{HI} = 10^{19}$ $T_b = 0.2 \text{ K}$ $t \approx 2 \text{ f}^{-2} \text{ s}$

A coherent structure to more than 3 kpc above the disk. HI mass 10^{6} Mo Equal amount in H+ Age 30 Myr E = 10^{53} ergs Cap lags behind Galactic rotation

Pidopryhora, Lockman & Shields 2007, ApJ, 656, 928

Artíst's conception of the Ophiucus Superbubble drawn to scale

3

Sun

HVCs around other galaxies

Fig. 2.— Total column density for discrete and diffuse high-velocity H I in the M31 GBT field, after masking emission from Andromeda's inclined, rotating disk. Contours were evaluated at $(3 \text{ kpc}, 72 \text{ km s}^{-1})$ resolution and rendered at 0.5, 1, 2, 10, and $20 \times 10^{18} \text{ cm}^{-2}$, then overlaid

HVCs around the Milky Way

37% of sky covered with HVC HI to this level

Shull et al. (2009) find 81% coverage from UV lines of ionized gas

 $N_{HI} = 10^{18}$ $T_b = 20 \text{ mK}$ $t \approx 160 \text{ f}^{-2} \text{ s}$

HVCs around the Milky Way

 $N_{\rm HI} = 10^{18}$

 $T_b=20 \text{ mK}$

 $t \approx 160 f^{-2} s$

37% of sky covered with HVC HI to this level

Shull et al. (2009) find 81% coverage from UV lines of ionized gas

The tip of the Magellanic Stream

$$\begin{split} N_{\text{HI}} &= 10^{17.5} \\ T_{b} {=} 6 \text{ mK} \\ t \approx 1600 \text{ f}^{-2} \text{ s} \end{split}$$

Composite of data from Parkes, the GBT, and WSRT (used as single dishes

> Nidever et al. 2010, ApJ, 732, 1618

The M81 group the classic example of interactions

Optical + VLA HI + GBT HI Chynoweth et al. 2008, AJ, 135, 1983

Braun & Thilker 2006, A&A, 417, 421 WSRT as single dishes 49' Resolution

> Putman et al. (2009, ApJ, 703, 1486) say it's not real!

Fig. 9. Integrated HI emission from the subset of detected features apparently associated with M 31 and M 33. The grey-scale varies between $log(N_{HI}) = 17-18$, for N_{HI} in units of cm⁻². Contours are drawn at $log(N_{HI}) = 17$, 17.5, 18, ... 20.5.

Hydrogen is abundant and observable

- The potential of HI studies at 1017
 - Flow of gas into and out of the Milky Way and other galaxies
 - Tracing past interactions
 - The cosmic web?
- The challenge of studies at 10^{17}
 - Signals are very weak, and yet likely extended
 - Possible with current instruments, it just takes time
- Near term
 - Better receivers –– Tsys=10 K?
 - Phased array feed receivers -- still not competitive, but...
 - EVLA-E -- f≈0.25
- Long term
 - SKA -- HPBW=2.5' reaches 1.6 mK over 25 km/s in 1 hour

(but GBT at 9' now reaches 0.7 mK over 25 km/s in 1 hr)

HI brightness and integration times

 $\Delta v=25 \text{ km/s}$

	log N _{HI} (cm ⁻²)	T _b (τ<<Ι) (K)	3σ t / f ² (sec)	
New HI Surveys cover the	22	200	2×10-6	
	21.5	65	2×10-5	
GASS δ≲0° 14' McClure-Griffiths et al. (2009)	21	21	2×10-4	
ricciure-Grinnins et al. (2007)	20.5	6.5	2×10-3	
Bonn survey 0°≲δ 10'	20	2.1	2×10-2	
Kerp et al. (2011)	19.5	0.65	0.2	
Arecibo Surveys 0°≲δ≲40° GALFA ALFALFA	19	0.2	2	
	18.5	0.065	16	
	18	0.02	160	
	17.5	0.0065	1600	
	17	0.002	16 000	

•

FLAG -- Focal Plane L-Band Array for the GBT B. Jeff, K. Warnick et al (BYU) J.R. Fisher, R. Norrod, A. Roshi (NRAO)

The future?

- 19 dual polarized elements. Cryogenic PAF system
- Tsys \sim 20 K; Aperture efficiency \sim 75 to 80 %
- 7 beams; spacing 0.5 FWHM to 1 FWHM
- Frequency coverage 1300 to 1800 MHz; Backend for processing signals

