Studies of Molecular Clouds and Star Formation with the Large Millimeter Telescope

F. Peter Schloerb
University of Massachusetts at Amherst
New Worlds, New Horizons

- Questions related to *Star Formation* cross-cut the scientific themes of NWNH
- ALMA will make significant contributions to this work.
- How can we maximize the ALMA payoff?
 - NWNH recommends large single dish submm telescope.
 - UMass and Mexico have a large single dish mm-wave telescope which will make important contributions.
Outline

- “Fundamentals” in the case for large single dishes.
- Example “Star (and Planet) Formation” Projects for a Large Single Dish
- The Large Millimeter Telescope
Star Formation Fundamentals

 - If you want to understand star formation, you better understand molecular clouds.
- Molecular Clouds are Big; Stars are Small.
 - If you want to understand star formation, you better be able to study molecular clouds at all relevant scales.
- Millimeter waves are the best means to study the Molecular Gas.
 - MM-wave telescopes are essential tools for the study of Molecular Clouds and Star Formation.
Radio Telescope Fundamentals

- Interferometric Arrays and Single Dish Telescopes have different, and complementary, strengths.
 - A large single dish is the natural complement to ALMA for surveying the sky and studying extended, low surface brightness emissions.
- For a single dish to be a true complement to an interferometric array it must have enough collecting area, resolution and mapping speed.
 - A BIG single dish equipped with focal plane arrays is needed to complement ALMA.
- Receiver technology improves faster than our financial ability to instrument large interferometric arrays.
 - Single Dishes are natural platforms to bring up new capabilities and explore discovery space.
Example Projects for a Large Single Dish

Large Scale Mapping of Turbulent Gas Structure

Core Initial Mass Function

Molecular Clouds in Nearby Galaxies

Interstellar Chemistry and Planetary Systems

DISCOVERY
- Habitable Planets
- Gravitational Radiation
- Time Domain
- Cyber-Discovery
- Theory

ORIGINS
- Universe
- First Sources of Light
- Galaxies and Large Scale Structure
- Black Holes
- Stars and Planets

COSMIC ORDER
- Galaxies and Black Holes
- Stars
- Planetary Systems
- Life

FRONTIERS OF KNOWLEDGE
- Inflation
- Acceleration
- Dark Matter
- Neutrinos
- Compact Objects/Relativity Probes
- Chemistry
Example Projects: *Turbulent Gas Structure*

- Heterodyne focal plane arrays used to map clouds with high enough spatial dynamic range to identify critical scales.

- Address relative roles of:
 - Gravity
 - Magnetic Fields
 - Turbulence
 - Mechanical/Radiative Feedback

- Large Single Dish Advantage:
 - Large scale mapping capability.
 - Filled aperture for sensitivity to low surface brightness.
 - High spatial dynamic range.

FCRAO 14m Map of Taurus Complex
100 sq. deg. 3.2 MegaSpectra
Goldsmith et al. (2008)

L1535 Tafalla et al (2002)
Example Project: Core Mass Function

- Continuum Focal Plane Arrays used to map dust continuum in ~100 sq. deg. fields to brown dwarf limit.
- Identify molecular cloud cores
 - Establish Core Mass Function.
 - Relate CMF to IMF – does the IMF result from the CMF?
 - Relate CMF to cloud dynamics inferred from spectral line maps.
 - Identify millimeter-excesses in YSO's.
- Large Single Dish Advantage:
 - Continuum survey speed.
 - High Resolution with filled aperture for best surface brightness sensitivity.

AzTEC/ASTE Map of Serpens South Gutermuth et al. 2011
Theory Challenge: *Explain Observed Structures*

- **Theoretical Requirements:**
 - Simulations
 - Appropriate Data Sets for Comparison

- **Large Single Dish Advantage:**
 - Rapid mapping for creation of needed data cubes

Ostriker, Stone, and Gammie 2001
Example Project: **Mapping Nearby Galaxies**

- Molecular line mapping of nearby galaxies with high sensitivity to a range of diagnostic tracers.
- Comparison with tracers of star formation allows tests of Kennicutt-Schmidt law.
- Large Single Dish advantage:
 - Probe star forming regions within galaxies.
 - Sensitivity to low surface brightness
 - Recovery of faint emission
 - Expands parameter space of galaxy properties.
- High map speed enables large numbers of galaxies.

\[
\sum_{\text{SFR}} \propto \sum_{\text{gas}}^{1.4}
\]

Kennicutt 1998

\[
\begin{align*}
\log \sum_{\text{SFR}} & \sim \log \sum_{\text{gas}} \\
\log \sum_{\text{gas}} & \sim \log \sum_{\text{SFR}}^{1.4}
\end{align*}
\]

Liu et al. 2011

- Whole Galaxies
- Star Forming Regions
Example Project: *Interstellar Chemistry and Planetary Systems*

- Observations of molecular line emission from comets, circumstellar disks, molecular cloud cores.
- Molecular diagnostics:
 - Composition
 - Isotope Ratios
 - Ortho-Para Ratios
- Seek to establish relationships between regions:
 - Comets and ISM/Core/Disk?
 - Organics in comets and origin of life?
- Large Single Dish Advantage:
 - Expand census of comets
 - SB Sensitivity at high resolution
Status of the LMT

- Telescope Structure Complete
- Inner 32m-Diameter of Reflector Surface Complete
- Setting surface with holography: Expectation is 100 microns RMS in this initial attempt.
- Optical pointing tests underway: Expectation is 2” RMS absolute all-sky pointing with subarcsec tracking error.
- Secondary and Tertiary Optics complete.
- Installation of First light instruments is next.
First Light Instruments
Redshift Search Receiver

- Redshift Search Receiver
- Ultra-wideband receiver/spectrometer for 3mm window.
- Used on FCRAO 14m for initial scientific work.
 - Studies of molecular lines in nearby galaxies
 - Surveys of ULIRGs
- LMT Expectation:
 - Measure redshifts of AzTEC sources.

SEE MIN'S POSTER!
First Light Instruments
AzTEC

- 144-pixel bolometer array
- Used on JCMT and ASTE Telescopes
- Known for discovery of ~1000 submm galaxies – the AzTEC sources.

LMT Expectation:
- Improved mapping speed over AzTEC/ASTE (x20)
- Improved source identifications with higher resolution.

SZ Effect and SMG Background in the Bullet Cluster
AzTEC/ASTE Wilson et al. 2008

SEE MIN’S POSTER!
Next Generation Instruments

- First Light Instruments are only the beginning for LMT. Others completed and ready to follow:
 - SEQUOIA focal plane array for 3mm window
 - 1mm SIS receiver
- Next Generation Instrument planning underway
 - AzTEC successor TOLTEC:
 - LEKIDS
 - 10^4 pixels in 3-colors
 - 10 sq. deg./mJy/hr.
Conclusions

- A large single dish for millimeter-wave astronomy will provide a valuable complement to ALMA and will address the key scientific themes presented in New Worlds, New Horizons.
- ASTRO2010 recognized this fact with recommendation of CCAT as a new initiative for the next decade.
- LMT will address these objectives in this decade.