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From NWNH

FRONTIERS OF KNOWLEDGE

New fundamental physics, chemistry, and biology can be revealed by astronomical
measurements, experiments, or theory and hence push the frontiers of human
knowledge.

Science frontier questions in this category are:

e Why is the universe accelerating?

e What is dark matter?

e What are the properties of the neutrinos?

e What controls the masses, spins and radii of compact stellar remnants?



Some thoughts about the next

decade

% Moving from phenomenology ‘ro de’rculed Tes’rs of
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What is dark energy?
What caused inflation?



Many examples at the boundary of astrophysics
and particle physics

+ Example 1: The nature of |
dark matter detection

Astrophyics
e.g. LSS, Fermi

% Example 2: Neutrino

mass Mixing Beyond
measur- standard

ments model

Astrophyics

e.g. LSS, Fermi



Many examples of where RMS will
contribute

% CMB measurements to quantitatively probe inflation
and exotic physics in the early universe

% Understanding the role of feedback on the
formation of structure (AGN, synchrotron in galaxy
clusters etc.)

% Probing particle acceleration (e.g Fermi/WMAP
haze)

+ Radio transients associated with gravitational wave
events

% ..and many more



Example: Using the CMB to quantitatively
probe inflation in the early universe.

% Scalar fluctuations (density fluctuations) are known to exist
and are produced during inflation.

% Tensor fluctuations (gravitational waves) may be generated
during inflation

+ Relative proportions depend on the exact model of inflation

-- See review Baumann et al., oM . .
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The allowed model space is large!
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Example of WMAP measurements of
rand A,
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Figure 7: WMAP 5-year constraints on the inflationary parameters ng and r [14]. The WMAP-

only results are shown in blue, while constraints from WMAP plus other cosmological
observations are in red. The third plot assumes that r is negligible.
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Where things are...

Label | Definition Physical Origin Value

O Baryon Fraction Baryogenesis 0.0456 £ 0.0015
Qcpwm | Dark Matter Fraction | TeV-Scale Physics (7) 0.228 £ 0.013

Oa Cosmological Constant Unknown 0.726 £ 0.015

T Optical Depth First Stars 0.084 £ 0.016

h Hubble Parameter Cosmological Epoch 0.705 £0.013

Ag Scalar Amplitude Inflation (2.445 + 0.096) x 10~

Ng Scalar Index Inflation 0.960 4 0.013

See review Baumann et al., arXiv:0811.3919




Where we would like things to be

Label | Definition Physical Origin Current Status Section
A, Scalar Amplitude V.V’ (2.445 4+ 0.096) x 10~ 63.4
g Scalar Index | 0.960 + 0.013 63.4
g Scalar Running | T only upper limits 63.4

(. Curvature Initial Conditions only upper limits 6.2
fn, | Non-Gaussianity Non-Slow-Roll, Multi-Field only upper limits 65.3
S [socurvature Multi-Field only upper limits 65.4
G Topological Defects End of Inflation only upper limits 66.1

V(g)=V

See review Baumann et al., arXiv:0811.3919

CMB polarization measurements will play a major role in determining these
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Polarization is the third measurable

property of the CMB

- Frequency spectrum

» Spatial temperature
variations:
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- Polarization generated by Thomson

scattering

» The polarization percentage is high (around

10%), but the signal is still very weak
The physics is well-understood

» Precision cosmology equally feasible using

polarization



Polarization patterns on the sky depend on the
source of the temperature anisotropies
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Relating polarization to observables

Y Eloctric £ < The observables are Stokes
ectric field
vector parameters I, Q and U

> Circular polarization (parameter V) is
hot expected

Q-0 / \
) U<0

% But Q and U depend on the local coordinate system
> Rotate coordinates by 45°, Q becomes U and vice versa

> Need an observable that is independent of coordinate
system.




"E" and "B" modes
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QUaD data - see later



E-modes as seen by WMAP (7-year)

Temperature Polarization

% Stacked hot and cold spots in
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Aim of CMB polarization
measurements

% Stronger constraints on a host of cosmological
parameters from £-modes
> E.g. Optical depth, 7, and redshift of reionization from
WMAP
% Measure (or set limits to) parameters of inflation
from B modes:
> E.g ratio of tensor/scalar modes, r
> Spectral index of tensor fluctuations, 7,
> Other effects e.g. non-gaussinity

+ Probe dark energy parameters and neutrino mass

through lensing of £-modes to B-modes, also CMB
temperature anisotropies



Polarization measurements require greater
sensitivity than temperature measurements...
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Example: The QUaD Experiment 2004-2007

+ Used polarization-sensitive bolometers (also in Planck, BICEP)
+ Specifically designed to measure CMB polarization

" QU'g_[? 2.6m telescope at the South Pole

B

Freq Beam No.
(GHz) | (arcmin) | feeds

100 63 | 12 (9)

150 4.2 19 (17)




The QUaD team

Stanford University/KIPAC

-- Sarah Church (US PI), Melanie
Bowden, Keith Thompson, Ed Wu

University of Chicago/KICP
-- Clem Pryke (Data Analysis
Leader), Tom Culverhouse, Robert
Friedman

Caltech
-- Andrew Lange, John Kovac, Erik
Leitch, Angiola Orlando
JPL/IPAC
-- Jamie Bock, Ben Rusholme, Mike
Zemcov

NASA Goddard
-- Jamie Hinderks

Chicago/SouthPole
-- Robert Schwarz

B

Cardiff University
-- Walter Gear (UK PI), Peter Ade,
Sujarta Gupta, Abigail Turner
University of Edinburgh
-- Andy Taylor
University of Cambridge
-- Michael Brown
Laboratoire APC/CNRS
-- Ken Ganga
Universidade Técnica de Lisboa
-- Patricia Castro
Manchester University
-- Lucio Piccirillo, Simon Melhuish
Maynooth College, Ireland
-- Anthony Murphy, Creidhe
O'Sullivan, Gary Cahill



Status of power spectrum measurements circa
2009 (Br'own et al., arXiv:0906.1003)
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Inflationary parameters from CMB

measurements
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Brown et al., arXiv:0906.1003
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Chiang et al.
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The experimental landscape going forward

+ Experiments fielding or under construction
> Planck (bolometers, HEMTs)

> QUIET II (HEMTS)

> EBEX (Bolometers)

> Keck (Bolometers)

> Polarbear (Bolometers)

> SPTpol (Bolometers)

> ABS (Bolometers)

> ACTpol (Bolometers)

> Spider (Bolometers)

> PIPER (Bolometers)

> + others I may have forgotten (the field is large...)

+ Reduction of systematics will be key

> We need to try different techniques and technologies

> We need wide frequency coverage to understand
foregrounds



Detector developments will drive new
experiments and discoveries
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MMIC arrays for CMB and other science
% Focal plane arrays (FPAs)

> CMB polarization interferometry

> High resolution measurements of the Sunyaev-Zel'dovich
effect using interferometers equipped with FPAs

> W-band and G-band spectrocopy

—=m Stanford, Caltech, JPL, Maryland (see
W":“?dp e I Sieth, Voll posters)
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We need to be prepared to confront
our data with more speculative
p hys | CS Credit: AP team

» Signature of the "Bubbles”
from eternal inflation

» Temperature patch is pure E-
mode but different radial
dependence to those from
density modes

% We need careful and ongoing
analysis to properly test these
predictions. See for example:

Bennett et al., 2011,
arXiv:1001.4758v2

Simulations, Feeney et al. 2010



Conclusions
% The CMB is still one of the cleanest probes that we
have of conditions in the early universe.

% Future measurements will set limits on inflationary
paramefters...
> n.h,- scalar and tensor spectral indices
> a =dn./dInk -- running spectral index
> r -- tensor/scalar ratio
> Non-gaussianity - a whole other talk there.......

% ..as well as other cosmological parameters and
secondary sources of anisotropy
> E.g. neutrino mass, Sunyaev-Zel'dovich effect

% Look for results from future experiments, especially
Planck in the next few years

+ A B-mode detection using 2 completely different
experimental methods would be transformative



