Radio Transient Surveys

Geoffrey C Bower (UC Berkeley)

New Worlds New Horizons

- Recognized *Time Domain* as a scientific frontier discovery area
- KBOs to GRBs to Black Holes to Type Ia SNe
- "only just begun to explore lively variations in the cosmos"
- The unexpected is expected
- LSST is number one ground-based priority

Optical Time Domain Science

- LSST: The whole observable sky every 3 nights in multiple filters. The same data serves many projects
- Enormous cameras and data volumes
- Builds on SDSS, PTF, PanStarrs, etc

Why Radio Transient Surveys?

- In some cases, more optimal search technique than optical or high energy (dust, spectrum, duration)
- Study unbiased samples to discover new source classes
- Determine the variability `foreground' for rare events
- Simultaneous radio/optical surveys for rejection of optical foregrounds

Long Duration Transients

- Orphan GRB afterglows
- Tidal disruption events
- Radio supernovae
- EM counterparts to GW sources

An Obscured Radio Supernova in M82

- Discovered serendipitously
- Not detected at optical, uv, nir, x-ray
 - What is the population of hidden SNe?
- Steep spectrum central source → compact object?
- Decelerating expansion → Probe of CSM
- Brunthaler et al. 2009, 2010
- Radio Survey requirements
- High frequency is optimal
 - Bright transient
 - Reduceds galaxy confusion, increases resolution
- Relatively low luminosity

 Targeted search of nearby galaxies at arcsecond resolution

OGRBAs

- Probes narrow jet model for GRBs
- Determines total number of GRBs
- High redshift galaxy and star formation tracer

 Universal Structured Jet Model: Rossi et al 2008

- Radio Survey requirements
- High frequency is optimal
 - Faster evolution, higher flux
 - Faint galaxy (confusion not important)
- R=10² y⁻¹ sky⁻¹ for 0.1 mJy radio survey
- Modest resolution for discovery is acceptable → High resolution followup

Tidal Disruption Events

- Probing accretion/jet dynamics & nuclear stellar and gas content
- Reverse shock model by Giannios & Metzger (2011)
 - F=2 mJy @ D=1 Gpc
 - $v_{\text{max}} = 25 \text{ GHz}$
 - Delay ~ 1 year
 - Timescale ~ 1 month
 - R $\sim 10^{-7}$ Mpc⁻³ y⁻¹
 - Radio limits $\sim 8 \times 10^{-7} \,\mathrm{Mpc^{-3}\,y^{-1}}$

Table 1. Surveys with Long Timescale Sensitivity

Name	f (GHz)	F_{lim} (mJy)	Ω (sr)	N_e	N_{can}	D_{lim} (Gpc)	$(10^{-7}~{\rm y}^{-1}~{\rm Mpc}^{-3})$
VLA	5.0	0.1	3.9e-06	20	0	2.99	< 29
3C286	1.4	70.0	1.6e-04	23	0	0.08	< 29042
PiGSS-I	3.1	2.0	3.0e-03	1	0	0.59	< 96
ATATS-I	1.4	230.0	2.1e-01	1	0	0.05	< 3113
MOST	0.8	14.0	5.5e-01	1	4	0.16	< 34
FIRST-NVSS	1.4	6.0	1.9e-01	1	0	0.28	< 14

- Radio Survey requirements
- High frequency is optimal
 - Bright transient
 - Faint galaxy (confusion not important)
- R=10² y⁻¹ sky⁻¹ for mJy radio survey
- Modest resolution for discovery is acceptable → High resolution followup

Radio Counterparts to GW Sources

- Jet formation, shock waves, environments, progenitors of GW sources (NS² binaries)
- 10 times more luminous than RSNe
- ~1 GHz identified as optimal frequency
- Duration ~ weeks
- F~1 mJy at 1 Gpc
- Rate very uncertain
 - 20 --- 20,000 Gpc⁻³ y⁻¹
- Nakar & Piran 2011

- Radio Survey requirements
- GHz frequency may be optimal
 - Bright transient
 - Faint galaxy (confusion not important)
- R=10¹⁻⁻⁴ y⁻¹ sky⁻¹ for 0.1 mJy radio survey
- Modest resolution for discovery is acceptable → High resolution followup

What do we know now?

1983.9 1984 1984.1 1984.2 1984.3 1984.4 1984.5 1984.6 1984.7 1984.8

Unknown Radio Transients from VLA Archival Survey

X-ray Counterparts to RTs w/o Optical Hosts

Preliminary results

- X-ray spectra marginally constrained
- Inconsistent with old NS (Ofek 2010)
- Consistent w/flare stars or brown dwarfs

ATATS: ATA 20 CM Survey

ATATS: Validation of ATA Flux Scale and Imaging Capabilities

Fig. 5.— A 25 square degree region of the deep field shown in Fig. 3, shown at a larger scale (and slightly different stretch) so that the structure of individual sources may be seen. All NVSS sources brighter than 20 mJy (corresponding to 5 times the RMS of the ATATS image) are plotted as circles; the size of the circle is proportional to the NVSS flux density. The greyscale runs from zero to $118.2\,\mathrm{mJy}$ beam $^{-1}(30\sigma)$.

Fig. 7.— Comparison of the flux densities of sources from the ATATS catalog, with the sum of fluxes of all NVSS sources within 75" of the ATATS positions.

ATATS: No Very Bright Transients or Strongly Variable Sources

Fig. 8.— The ratio of the standard deviation of flux densities of sources detected in ATATS, $\sigma(S_{ATATS})$, to the mean flux density of the sources, \overline{S}_{ATATS} , plotted as a function of \overline{S}_{ATATS} , for sources with detections in 5 or more ATATS epochs. Points are color coded according to the number of ATATS epochs in which they were detected.

Rejects Nasu 1-Jy Transients (M09)

ATA PiGSS <u>Pi G</u>Hz <u>S</u>ky <u>S</u>urvey

- Radio Counterpart to Sloan Digital Sky Survey
 - Overlap with NVSS, FIRST & SDSS
 - 10⁴ Square degrees
 - Arcminute resolution
- Highest Frequency Deep, Large Radio Survey
 - 1 mJy rms
 - Factor of ~10 more sensitive than GB6 (5 GHz)
- Smaller, deeper fields
 - 10 sq deg repeated every day
- 24 calendar months to complete with ATA-42
- Broad science case

Radio Transient Source Counts

PiGSS Status

- •5000 sq deg campaign
 - First pass complete
 - •Second pass underway
- •300 epochs of 10 sq degree imaging
 - •1 mJy rms
- •Deep image from 80 daily images of 10 sq deg fields
 - •0.2 mJy rms
- •Two epochs of 250 sq deg images
 - •1 mJy rms
 - •2 month separation

PiGSS Spectral Indices

PiGSS Light Curves

Transient Candidates from PiGSS

- Single epoch
 - Single epoch gray scale
 - Deep image contours
 - 1 day timescale

 Deep image but not in previous catalog (NVSS, FIRST, etc)

Transient Parameter Space

Commensal Transient Search in Cygnus

Some Lessons & Questions from ATA Surveys

- Archival searches have been very effective
- Real time detection very powerful but very difficult to achieve
- Deep images are very useful tool for characterization of variable and transient population
- Low angular resolution makes imaging and searching easy but makes multiwavelength, multi-survey identification difficult
- Finding sources in nearby galaxies very difficult --- requires high angular resolution to eliminate confusion
- Commensal modes are effective way to get a lot of observing time
 - Piggyback on pulsar-timing observations?
- What is the right balance between shallow-and-wide, deep-and-narrow, and targeted?
- What is the best frequency to search?
 - Higher frequencies are more strongly variable
 - Higher frequencies exclude galactic structure
 - But smaller beam area and slower survey speed

Where are we going?

Survey Requirements

	Frequency	Localization	Timescale	Survey Type	Rate
OGRBA	>10 GHz	10 arcsec	< 1 month	Blind	10 ² y ⁻¹ sky ⁻¹
Tidal disruption	>10	10	1	Blind	10 ²
RSNe	>10	1	>1	Targeted	10 y ⁻¹
GWs	<10	10	<1	Blind	10 ¹⁻⁴ y ⁻¹ sky ⁻¹
Optimal Survey	≥10 GHz	10 arcsec	≤1 month	Blind	1 day ⁻¹

Survey Requirements

- •0.1 mJy
- •100 deg² day⁻¹
- •10 day cadence

Survey Strategies

EVLA targeted surveys of large sample of nearby galaxies

Blind surveys of local volume with high cadence

Joint radio/optical survey campaigns

ASKAP

- 36 x 12m antennas
- Focal plane arrays provide
 30 sq deg instantaneously
 - Enormous survey speed
 - Technically ambitious
 - Major computing and calibration challenges
- 0.7 --- 1.8 GHz
- Operational >2013
- VAST survey
 - Targets ESEs, RSNe, GRBs, ...
 - Tiered search strategy @ mJy levels

DACOTA

- Transients
- •CO at redshift of EOR
- SZ Effect
- Galactic Water and Ammonia
- •Other...

- Dense array of 4 x 64 x 2m antennas
- 10 40 GHz (2 feed horns)
- T_{svs} ~ 25 50 K
- 8 GHz Bandwidth, 8k channels
- Spatial FFT Correlator
- Resolution: 1' 22'
- Survey speed ~ EVLA speed
- 2 years to complete 100 deg² CO survey