Proper Motion of the Andromeda Galaxy: The Keystone of Local Group Dynamics

Collaborators: Andreas Brunthaler Mark Reid Kyle Willett Jeremy Darling (CASA, University of Colorado)

Proper Motion of the Andromeda Galaxy: The Keystone of Local Group Dynamics

Is the Local Group bound? What is its fate? Does light trace mass? Dark matter halos: mass, profile, size, shape

Proper Motion of the Andromeda Galaxy: The Keystone of Local Group Dynamics

 Astrometry Discovery Area
 Galactic Neighborhood Science Question: What are the connections between dark and luminous matter?

The Woeful Inadequacy of Extragalactic Maser Observations

Remember:

All masers seen in the Galaxy occur in other galaxies.

But, moving from kpc to Mpc distances, Resolution down 1000-fold Sensitivity down 10⁶-fold

 $1 \text{ pc} \rightarrow 1 \text{ kpc}$ $1 \text{ Jy} \rightarrow 1 \text{ }\mu\text{Jy}$

Only a few species (water best)

Only a few 10's of galaxies

The Woeful Inadequacy of Extragalactic Maser Observations

Remember:

All masers seen in the Galaxy occur in other galaxies.

But, moving from kpc to Mpc distances, Resolution down 1000-fold Sensitivity down 10⁶-fold

$$1 \text{ pc} \rightarrow 1 \text{ kpc}$$
$$1 \text{ Jy} \rightarrow 1 \text{ µJy}$$

Only a few species (water best)

Only a few 10's of galaxies

We now have the sensitivity to detect Galactic analog masers

Darling, Brogan, & Johnson GBT survey

 \bigcirc

Darling, Brogan, & Johnson GBT survey

Problems: M31 is large! Sensitivity to detect Galactic analogs Low(er) star formation rate (8x less)

Problems:Solutions:M31 is large!--Targeted survey of IR sourcesSensitivity to detect Galactic analogs-- GBTLow(er) star formation rate (8x less) -- Large N

Spitzer 24 micron (Gordon et al 2008)

Problems:Solutions:M31 is large!--Targeted survey of IR sourcesSensitivity to detect Galactic analogs-- GBTLow(er) star formation rate (8x less) -- Large N

Green Bank Survey:

- Select compact luminous 24 µm sources

(Spitzer; Gordon et al 2008)

- Sensitivity to detect Galactic analog masers in 5 minutes
 200 Jy at 6 kpc (Galaxy) is 12 mJy at 780 kpc (M31)
- 206 sources, 32 hours
- Confirmation/refutation observations of a large fraction

Green Bank Survey:

Methanol maser Sjouwerman et al 2010

- Select compact luminous 24 µm sources

(Spitzer; Gordon et al 2008)

- Sensitivity to detect Galactic analog masers in 5 minutes
 200 Jy at 6 kpc (Galaxy) is 12 mJy at 780 kpc (M31)
- 206 sources, 32 hours
- Confirmation/refutation observations of a large fraction

New Masers in the Andromeda Galaxy

Methanol maser Sjouwerman et al 2010

CO (1-0) from Nieten et al (2006) Spitzer 24 μm from Gordon et al (2008)

Green Bank Survey Implications:

- 24 μ m selection works, but is not predictive
- Can detect Galactic analog masers in Local Group and beyond! (up to ~20 Mpc)

Proper rotation, geometric distance possible to ~5 Mpc

Proper motion possible to ~20 Mpc (depends on v_{pec})

Proper Motion ⇒ **3-D Velocity**

$\sigma_{\mu} \propto t^{-3/2}$

Expect ~6σ detection in ~3 years

** Arrows are schematic cartoons **

Rotation and Peculiar Velocities

Rotation curve from Unwin (1983) and Carignan et al (2006)

Proper Rotation \Leftrightarrow Geometric Distance

~70 µarcsec/year

$D = V_{Rot} / \mu_{Rot}$

Distance error gets ~equal contributions from rotation curve uncertainty and proper motion uncertainty (initially)
Expect ~10% uncertainty (initially)

(c.f. Brunthaler et al work on M33)

Moving "Cluster" ⇒ Diverging Masers

$\mu_{Div} = -V_r \theta / D$

- M31 gets larger on the sky as it approaches
- Largest maser separation is 1.8°
- Detectable in ~10 years?
- Cute, but useful?

Building a Comprehensive Maser Network for Proper Motion Studies

24 µm identifies maser sites but is not predictive

 \Rightarrow Additional masers are likely!

Building a Comprehensive Maser Network for Proper Motion Studies

24 mµ identifies maser sites but is not predictive

 \Rightarrow Additional masers are likely!

The Future

The Proper Motion of the Andromeda Galaxy

Keystone for Local Group kinematics, Dark Matter Proper rotation yields distance Moving cluster distance

Proper Motion of Other Galaxies

Galactic analog masers detectable to ~20 Mpc Proper rotation, geometric distance possible to ~5 Mpc Proper motion possible to ~20 Mpc Bearing on Dark Matter

The End