Opening New Horizons

Joan Centrella
NASA's Goddard Space Flight Center
Greenbelt, MD USA

Building on New Worlds New Horizons
Santa Fe, NM 7-10 March 2011

Gravitational Waves

- Ripples in spacetime curvature
- Predicted by GR
- Travel at velocity v = c
- Produced by masses w/ time-changing quadrupole moments
 - → such as binary systems
- Carry energy & momentum
 - → cause binary orbits to shrink
- Carry the direct signatures of the massive objects dynamics
- Interact weakly with matter
 - > carry info about deep, hidden regions in the universe
 - → direct detection is difficult.... precision measurements
- · New tool for observing the universe.....

The Gravitational Wave Spectrum

GW amplitudes.... and GW detectors....

Binary orbital frequency

$$f_{\rm GW} \sim 2 f_{\rm orb} \sim \frac{1}{\pi} \left(\frac{GM}{a^3}\right)^{1/2}$$

- BH/BH, $a \sim 5R_{Sch}$ $f_{GW} \sim 100 \text{ Hz}$
- MBH/MBH, $a \sim 5R_{Sch}$ $f_{GW} \sim 4 \times 10^{-4} \text{ Hz}$
- MBH/MBH, $a \sim 5 \times 10^4 \text{ R}_{Sch}$ $f_{GW} \sim 4 \times 10^{-10} \text{ Hz}$

- Ground-based: LIGO, VIRGO...
 - Interferometers w/ km-scale arms
 - High freq, 10 Hz ≤ f_{GW} ≤ 10⁴ Hz
 - Mergers of stellar and IMBHs, BHs, NS/NS, NS/BHs...
- Space-based: LISA
 - Interferometer, arms ~ 5 x 10⁶ km
 - Low freq, 10^{-4} Hz ≤ f_{GW} ≤ 10^{-1} Hz
 - MBHs, Galactic compact binaries at wider separations
- Pulsar Timing Arrays:
 - GWs change pulsar TOA's
 - Very low freq, $\sim 10^{-9}$ Hz
 - Widely separated MBH binaries, cosmic relic GW backgrounds

Ground-based detectors are opening the GW window...

- Initial LIGO reached promised sensitivity in 2005-7 observing run (S5)
- Advanced LIGO, VIRGO expected to make regular observations 2016+
- Large Japanese detector (LCGT) funded, maybe another in Australia
- Sources are NS/NS mergers, etcsynergy w/ radio transients (Frail)

LISA: Laser Interferometer Space Antenna

- Low frequency GWs: $10^{-4} \text{ Hz} \leq f_{\text{GW}} \leq 10^{-1} \text{ Hz}$
- NASA/ESA partnership
- 3 spacecraft, at vertices of equilateral triangle
- Interferometer $L \sim 5 \times 10^6 \text{ km}$
- Heliocentric orbit, 20° behind Earth

LISA Pathfinder

- ESA mission (NASA participation)
- Single interferometer, L~ 30cm
- Will test LISA hardware in a space environment
 - → "drag free" flying
- Launch ~ 2013

LISA has many strong GW sources....

The low frequency GW window is richly populated with strong sources

Massive Black Hole binary inspirals and mergers (to z~20) (~ tens to hundreds)

Ultra-compact binaries, mostly in Galaxy (~ thousands)

Capture of stellar-mass Black Holes by massive BHs in normal galactic nuclei to z ~ 1 (~hundreds)

Cosmic backgrounds, superstring bursts, ...?

Gravitational waveforms <u>encode</u> the dynamics of massive objects...

Analysis of the waveforms gives direct measurements of

- masses,
- spin vectors,
- luminosity distance,
- orbital inclination.....

Black Hole Captures....

- Compact object spirals into a massive BH
- Map of curved space geometry near BH horizon → is it a Kerr black hole?
- Study populations in normal galaxies

LISA will observe ~10⁵ orbits in a year

J. Gair

UNDERSTANDING THE COSMIC ORDER

- How do black holes grow, radiate, & influence their surroundings?
 - Mergers of BHs out to z > 15
 - Captures of stellar compact objects by central massive BHs out to z ~ 1

- How do the lives of massive stars end?
- What are the progenitors of Type la supernovae and how do they explode?
 - LISA will find ~ 20,000 compact binaries, mostly in the Galaxy
 - At least ~ 100 will also be observed optically

ORIGINS

- What were the first objects to light up the universe, and when did they do it?
 - MBH megers at high redshifts z > 15

- What is the fossil record of galaxy assembly from the first stars to the present?
- How do cosmic structures form and evolve?
 - MBH megers at high redshifts z > 15
 - Captures of compact objects by central MBHs
 → study central MBH environments in normal galaxies in local universe

- Cosmic strings, relic GWs.....

FRONTIERS OF KNOWLEDGE

- Why is the universe accelerating?
 - Using MBH mergers out to z = 3, in 3 years
 LISA can determine dark energy parameter "w"
 to ±(2-4)% using statistical methods and
 without EM counterparts (Petiteau, Babak, Sesana 2011)
- What controls the mass, radius, and spin of compact stellar remnants?
 - LISA will find ~ 20,000 compact binaries, mostly in the Galaxy
 - At least ~ 100 will also be observed optically

DISCOVERY

- Gravitational wave astronomy
 - LISA will open an exceptionally rich portion of the GW spectrum

- The epoch of reionization
 - MBH mergers in the high redshift universe

- Time-domain astronomy
 - Long-lived GW signals
 - Advance notice of mergers

MBH mergers at high redshifts...

- MBH mergers are proxies for galaxy mergers, trace structure formation
- LISA detections of MBH mergers will discriminate between models of structure formation (Sesana, Volonteri, Haardt 2009)

of mergers observed per year by LISA, for various $m_{BH} = m_1 + m_2$, for different stucture formation models

Redshift distribution of MBH mergers observed in 3 years with S/N > 5 for various struc formation models

LISA will detect MBH mergers at high SNR.....

- Masses & spins to very high precision < 1%
- Luminosity distances to good precision ~ 10%

Simulated LISA data stream from merger of two 10⁵M_☉ BHs, with instrument noise

Amplitude S/N Contours (optimal case)

Complementary observations....

GWs measure dynamics of primary massive objects

EM radiation measures emissions from environments of massive objects

- Bulk motion dynamics
- Luminosity distance
- Progenitor masses, spins.....

- Host galaxy
- Gas environment
- Red shift.....

Multi-messenger astronomy opens exciting new possibilities for discovery....

Multi-messenger observations of MBH mergers

Coalescing MBH binaries evolve upwards in frequency ("chirp")

through LISA band over ~months - year(s)

 LISA will give ~few-degree error boxes and time of merger months in advance

 Error box dimensions shrink to
 ~ 10s of arcmin or smaller as S/N increases and merger approaches

Area between signal (blue) & noise (black) gives SNR

Observing a MBH merger with LISA...

- $2 \times 10^6 M_{SUN}$ MBH binary at z = 1
- Full waveform including merger, with LISA's motion

Simulation of the Gravitational Wave Sky....

- LISA: Compact binaries, MBH mergers, BH captures...
- Ground-based: BH & NS mergers, supernovae...
- <u>Pulsar Timing (not shown): GW backgrounds (MBH binaries, cosmological....</u>

GWs add a new dimension to studying the universe...

- GWs have many analogies to sound: waves of spacetime
- **Detectors are our "microphones"**
 - 1D response, not an image.
 - Convert to sound → you can listen to GWs

 LISA will add the audio dimension to our ability to monitor the dynamical universe:

the soundtrack of the cosmos

So...imagine....

