A Pulsar Timing Array for Gravitational Wave Detection

Paul Demorest, NRAO
About 10% of known radio pulsars are “recycled” millisecond pulsars (MSPs). These are spun up by accreting matter from a companion star:

These rare objects are incredibly useful for exploring a variety of extreme physics and astrophysics!
MSPs act as extremely precise astronomical clocks:

Spin period of PSR B1937+21 at Midnight, December 5, 1998:

\[P = 1.5578064688197945 \text{ ms} \]
\[+/- 0.0000000000000004 \text{ ms} \]
Timing of binary NS allows tests of gravity / general relativity.

NS mass measurements provide unique tests of the physics of matter at super-nuclear density.
Gravitational waves:

Freely-propagating “space-time ripples” predicted by GR.

Generated by almost any moving mass (binaries, etc).

Are very weak and not yet directly detected.

Detection will be another confirmation of GR. And will open up gravitational wave astronomy.
Experimental evidence for GW:

Orbital decay of PSR B1913+16 measured by radio timing exactly matches expected energy loss to GW emission.

(Physics Nobel prize for Hulse and Taylor in 1993)
Pulsar Timing Array: a galactic-scale gravitational wave detector.

Sensitive to very low frequency (~nHz) grav waves.
Pulsar Timing Array GW complementarity:

For PTAs, sensitivity $h \sim dt / T \rightarrow$ requires 10s of ns over years!
Nanohertz GW sources:

“Monochromatic” MBH-MBH binaries of $>10^7$ solar mass.

- Stochastic MBH background (Jaffe & Backer 2003, Sesana et al 2008, ...)
- Resolved MBH sources (Sesana et al 2009, Boyle & Pen 2010, ...)
- Also cosmic strings, other exotica / the unknown!
Isotropic stochastic BG induces correlated timing residuals in pulsar pairs.

Characteristic signature vs pairwise angular separation. ("Hellings/Downs curve")
Pulsar Timing Arrays around the world:

Parkes Pulsar Timing Array (PPTA)

European Pulsar Timing Array (EPTA)

North American Nanohertz Observatory for Gravitational Waves (NANOGrav)

In combination, International Pulsar Timing Array (IPTA)!
NANOGrav project: http://www.nanograv.org

Collaboration formally started in 2007.

Current chair: Maura McLaughlin, WVU.

$6.7M / 5-yr NSF PIRE award.
NANOGrav project: http://www.nanograv.org

Favorable response from Astro2010:

GW astronomy one of 5 key discovery areas.

PTAs highly recommended by RMS panel.

NANOGrav listed as a contender for proposed Mid-Scale NSF funding.
NANOGrav observing:

Monitor ~20 pulsars monthly, starting in 2005. 5-yr data analysis underway!

Dual-freq: 820, 1400 MHz (GBT); 327, 430, 1400, 2300 MHz (AO).

Typically 30 min per source per band each epoch.

Uses ASP pulsar backends (~64 MHz coherent dedisp).
Arecibo observatory: 305-m fixed reflector
Green Bank Telescope: 100-m, fully steerable
NANOGrav 5-year timing results overview:

(plot: D. Nice)
NANOGrav 5-year timing results summary
(analysis ongoing; PD, M. Gonzalez, D. Nice, I. Stairs, S. Ransom, R. Ferdman)

<table>
<thead>
<tr>
<th>Source</th>
<th>Per-channel RMS, μs</th>
<th>χ²</th>
<th>Daily RMS, μs</th>
<th>Hi-freq RMS, μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1713+0747</td>
<td>0.106</td>
<td>1.48</td>
<td>0.030</td>
<td>0.041</td>
</tr>
<tr>
<td>J1909–3744</td>
<td>0.181</td>
<td>1.95</td>
<td>0.038</td>
<td>0.047</td>
</tr>
<tr>
<td>B1855+09</td>
<td>0.395</td>
<td>2.19</td>
<td>0.111</td>
<td>0.101</td>
</tr>
<tr>
<td>J0030+0451</td>
<td>0.604</td>
<td>1.44</td>
<td>0.148</td>
<td>0.328</td>
</tr>
<tr>
<td>J1600–3053</td>
<td>1.293</td>
<td>1.45</td>
<td>0.163</td>
<td>0.141</td>
</tr>
<tr>
<td>J0613–0200</td>
<td>0.781</td>
<td>1.21</td>
<td>0.178</td>
<td>0.519</td>
</tr>
<tr>
<td>J1744–1134</td>
<td>0.617</td>
<td>3.58</td>
<td>0.198</td>
<td>0.229</td>
</tr>
<tr>
<td>J2145–0750</td>
<td>1.252</td>
<td>1.97</td>
<td>0.202</td>
<td>0.494</td>
</tr>
<tr>
<td>J1918–0642</td>
<td>1.271</td>
<td>1.21</td>
<td>0.203</td>
<td>0.211</td>
</tr>
<tr>
<td>J2317+1439</td>
<td>0.496</td>
<td>3.03</td>
<td>0.251</td>
<td>0.155</td>
</tr>
<tr>
<td>J1853+1308</td>
<td>1.028</td>
<td>1.06</td>
<td>0.254</td>
<td>0.271</td>
</tr>
<tr>
<td>J1012+5307</td>
<td>1.327</td>
<td>1.40</td>
<td>0.276</td>
<td>0.345</td>
</tr>
<tr>
<td>J1640+2224</td>
<td>0.562</td>
<td>4.36</td>
<td>0.409</td>
<td>0.601</td>
</tr>
<tr>
<td>J1910+1256</td>
<td>1.394</td>
<td>2.09</td>
<td>0.708</td>
<td>0.710</td>
</tr>
<tr>
<td>J1455–3330</td>
<td>4.010</td>
<td>1.01</td>
<td>0.787</td>
<td>1.080</td>
</tr>
<tr>
<td>B1953+29</td>
<td>3.981</td>
<td>0.98</td>
<td>1.437</td>
<td>1.879</td>
</tr>
<tr>
<td>J1643–1224</td>
<td>2.892</td>
<td>2.78</td>
<td>1.467</td>
<td>1.887</td>
</tr>
</tbody>
</table>

Analysis features:

2 PSRs at ~40 ns!

Two independent calibration/processing pipelines

DM(t) and timing model in single fit.

Fit includes systematic timing vs freq correction (profile shape evolution).
Best timing residuals versus time:

J1713+0747

J1909-3744
5-year NANOGrav GW cross-correlation analysis

Computed using methods from Demorest (2007):
Assumes/optimized for -2/3 power law GW spectrum.
Current work: Inject/characterize simulated GW signals.
How to improve the measurement?

Easy way: Do nothing!
Expected GW sensitivity improvement vs time:
How to improve the measurement?

Easy way: Do nothing!

Currently happening:
- Discover/add more pulsars
- Better instrumentation
- Improved data analysis (more GW signals; ISM)

Near future:
- Increase observing time on current telescopes.
- Receiver upgrades

Long-term:
- More collecting area (larger telescopes).
Rapidly increasing number of MSPs:

NANOGrav pulsars (in galactic coords):
red="classic", blue=recently added (past ~year)
From 17 orig sources -> 27 by later this year.

Driven by Fermi MSP discoveries; also GBNCC (GBT), PALFA (Arecibo), HTRU (Parkes) ongoing pulsar surveys.
New high-precision timing instrumentation: (Demorest, Ransom, Ford, McCullough, Ray, Brandt, Duplain)

- **GUPPI** = Green Bank *Ultimate* Pulsar Processing Instrument
- **Fully utilizes** GBT low-freq receivers.
- Incorporates best features of 5 previous backends at GB.
 - Both search and timing/coherent modes.
 - 100, 200, or **800 MHz** total BW
 - 8-bit ADCs, full-Stokes, flexible parameters (# channels, integration time, etc).
GUPPI architecture:
~1 MHz PFB in FPGAs
Coherent dedisp in GPUs

IBOB

XAUI

BEE2

10 Ge switch; 24 Gb/s

“beef”

GPUs
Coherent GUPPI first light
PSR B1937+21, 1100--1900 MHz
J1614-2230 Shapiro delay timing with coherent GUPPI:

J1614-2230 is a NANOGrav PTA target

GUPPI gives 1 us timing in 1 minute.

Orbital inclination = 89.17(2) deg!

Pulsar mass = 1.97(4) solar!

Expected GW sensitivity improvement vs time:
Improving existing telescope resources:

Current usage ~3% total time at GBT/Arecibo.

Wideband receiver upgrades (~0.8-3 GHz)

“PUPPI” for Arecibo is in progress.

EVLA provides ~GBT sensitivity, and octave-BW receivers.

First EVLA pulsar detection! (Feb 2011, PD, A. Deller)
Future telescopes
Main criteria: **size** (G/T) and **location** (sky coverage). Freq coverage ~0.8-3.0 GHz.

- MeerKAT (South Africa)
 - 64 13.5-m dishes. ~GBT sensitivity
 - Contributions: Add'l area, receivers, backends, expertise.

- FAST (China)
 - One 500-m dish! ~3x Arecibo sensitivity
 - Dedicated PTA telescope?
Conclusions/Summary:

1. **NANOGrav** project aims to detect nHz-freq GW using pulsar timing.

2. Current best timing results at the \(\sim 40 \text{ ns level} \). GW detection is possible within the next \(\sim 5\text{-}10 \) years.

3. Ongoing discovery of new MSPs.

4. **GUPPI** instrument provides order-of-magnitude observational improvement.

5. Exciting near-future improvement from new telescopes (EVLA, MeerKAT, FAST, ...).