A Pulsar Timing Array for Gravitational Wave Detection

Paul Demorest, NRAO

About 10% of known radio pulsars are "recycled" millisecond pulsars (MSPs). These are spun up by accreting matter from a companion star:

(Image: B. Saxton, NRAO)

These rare objects are incredibly useful for exploring a variety of extreme physics and astrophysics!

MSPs act as *extremely* precise astronomical clocks:

Spin period of PSR B1937+21 at Midnight, December 5, 1998:

Timing of binary NS allows tests of gravity / general relativity.

NS mass measurements provide unique tests of the physics of matter at super-nuclear density.

Gravitational waves:

Freely-propagating "spacetime ripples" predicted by GR.

Generated by almost any moving mass (binaries, etc).

Are *very* weak and not yet directly detected.

Detection will be another confirmation of GR. And will open up gravitational wave astronomy.

Experimental evidence for GW:

Orbital decay of PSR B1913+16 measured by radio timing *exactly* matches expected energy loss to GW emission.

(Physics Nobel prize for Hulse and Taylor in 1993)

Pulsar Timing Array: a galactic-scale gravitational wave detector.

Sensitive to very low frequency (~nHz) grav waves.

Pulsar Timing Array GW complementarity:

For PTAs, sensitivity h ~ dt / T --> requires 10s of ns over years!

Nanohertz GW sources:

"Monochromatic"
MBH-MBH
binaries of >10⁷
solar mass.

PTA Sources

- Stochastic MBH background (Jaffe & Backer 2003, Sesana et al 2008, ...)
- Resolved MBH sources (Sesana et al 2009, Boyle & Pen 2010, ...)
- Also cosmic strings, other exotica / the unknown!

Isotropic stochastic BG induces correlated timing residuals in pulsar pairs.

Characteristic signature vs pairwise angular separation. ("Hellings/Downs curve")

Pulsar Timing Arrays around the world:

Parkes Pulsar Timing Array (PPTA)

European Pulsar Timing Array (EPTA)

North American Nanohertz Observatory for Gravitational Waves (NANOGrav)

In combination, International Pulsar Timing Array (IPTA)!

NANOGrav project:

http://www.nanograv.org

Primarily US/Canadabased pulsar timing array project using US radio telescopes.

Collaboration formally started in 2007.

Current chair: Maura McLaughlin, WVU.

\$6.7M / 5-yr NSF PIRE award.

Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe

A White Paper for the Astronomy & Astrophysics Decadal Survey
NANOGrav:

The North American Nanohertz Observatory for Gravitational Waves

Principal Authors: P. Demorest (NRAO, 434-244-6838, pdemores@nrao.edu); J. Lazio (NRL, 202-404-6329, Joseph.Lazio@nrl.navg.mil); A. Lommen (Franklin & Marshall, 717-291-4136, andrea.lommen@fandm.edu)

NANOGrav Members and Contributors: A. Archibald (McGill); Z. Arzoumanian (CRESST/USRA/NASA-GSFC); D. Backer (UC Berkeley); J. Cordes (Cornell); P. Demorest (NRAO); R. Ferdman (CNRS, France);
P. Freire (NAIC); M. Gonzalez (UBC); R. Jenet (UTB/CGWA); V. Kaspi (McGill); V. Kondratiev (WVU);
J. Lazio (NRL); A. Lommen (NANOGrav Chair, Franklin & Marshall); D. Lorimer (WVU); R. Lynch (Virginia); M. McLaughlin (WVU); D. Nice (Bryn Mawr); S. Ransom (NRAO); R. Shannon (Cornell); X. Siemens (UW Milwaukee); I. Stairs (UBC); D. Stinebring (Oberlin)

This white paper is endorsed by: ATA; LISA; NAIC; NRAO; SKA; US SKA; D. Reitze (LSC Spokesperson, U Fl.); D. Shoemaker (LIGO Lab, MIT); S. Whitcomb (LIGO Lab, Caltech); R. Weiss (LIGO Lab, MIT)

NANOGrav project:

http://www.nanograv.org

Favorable response from Astro2010:

GW astronomy one of 5 key discovery areas.

PTAs highly recommended by RMS panel.

NANOGrav listed as a contender for proposed Mid-Scale NSF funding.

Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe

A White Paper for the Astronomy & Astrophysics Decadal Survey
NANOGrav:

The North American Nanohertz Observatory for Gravitational Waves

Principal Authors: P. Demorest (NRAO, 434-244-6838, pdemores@nrao.edu); J. Lazio (NRL, 202-404-6329, Joseph.Lazio@nrl.navy.mil); A. Lommen (Franklin & Marshall, 717-291-4136, andrea.lommen@fandm.edu)

NANOGrav Members and Contributors: A. Archibald (McGill); Z. Arzoumanian (CRESST/USRA/NASA-GSFC); D. Backer (UC Berkeley); J. Cordes (Cornell); P. Demorest (NRAO); R. Ferdman (CNRS, France); P. Freire (NAIC); M. Gonzalez (UBC); R. Jenet (UTB/CGWA); V. Kaspi (McGill); V. Kondratiev (WVU); J. Lazio (NRL); A. Lommen (NANOGrav Chair, Franklin & Marshall); D. Lorimer (WVU); R. Lynch (Virginia); M. McLaughlin (WVU); D. Nice (Bryn Mawr); S. Ransom (NRAO); R. Shannon (Cornell); X. Siemens (UW Milwaukee); I. Stairs (UBC); D. Stinebring (Oberlin)

This white paper is endorsed by: ATA; LISA; NAIC; NRAO; SKA; US SKA; D. Reitze (LSC Spokesperson, U FL); D. Shoemaker (LIGO Lab, MIT); S. Whitcomb (LIGO Lab, Caltech); R. Weiss (LIGO Lab, MIT)

NANOGrav observing:

Monitor ~20 pulsars monthly, starting in 2005. 5-yr data analysis underway!

Dual-freq: 820, 1400 MHz (GBT); 327, 430, 1400, 2300 MHz (AO).

Typically 30 min per source per band each epoch.

Uses ASP pulsar backends (~64 MHz coherent dedisp).

Arecibo observatory: 305-m fixed reflector

Green Bank Telescope: 100-m, fully steerable

NANOGrav 5-year timing results overview:

(plot: D. Nice)

NANOGrav 5-year timing results summary (analysis ongoing; PD, M. Gonzalez, D. Nice, I. Stairs, S. Ransom, R. Ferdman)

Source	Per-channel	χ^2	Daily	Hi-freq
	RMS, μs		RMS, μs	RMS, μs
J1713+0747	0.106	1.48	0.030	0.041
J1909-3744	0.181	1.95	0.038	0.047
B1855+09	0.395	2.19	0.111	0.101
J0030+0451	0.604	1.44	0.148	0.328
J1600-3053	1.293	1.45	0.163	0.141
J0613-0200	0.781	1.21	0.178	0.519
J1744-1134	0.617	3.58	0.198	0.229
J2145-0750	1.252	1.97	0.202	0.494
J1918-0642	1.271	1.21	0.203	0.211
J2317+1439	0.496	3.03	0.251	0.155
J1853+1308	1.028	1.06	0.254	0.271
J1012+5307	1.327	1.40	0.276	0.345
J1640+2224	0.562	4.36	0.409	0.601
J1910+1256	1.394	2.09	0.708	0.710
J1455-3330	4.010	1.01	0.787	1.080
B1953+29	3.981	0.98	1.437	1.879
J1643-1224	2.892	2.78	1.467	1.887

Analysis features:

2 PSRs at ~40 ns!

Two independent calibration/processing pipelines

DM(t) and timing model in single fit.

Fit includes systematic timing vs freq correction (profile shape evolution).

Best timing residuals versus time:

J1713+0747

J1909-3744

5-year NANOGrav GW cross-correlation analysis

Computed using methods from Demorest (2007):
Assumes/optimized for -2/3 power law GW spectrum.
Current work: Inject/characterize simulated GW signals.

How to improve the measurement?

Easy way: Do nothing!

Expected GW sensitivity improvement vs time:

How to improve the measurement?

Easy way: Do nothing!

Currently happening:

- Discover/add more pulsars
- Better instrumentation
- Improved data analysis (more GW signals; ISM)

Near future:

- Increase observing time on current telescopes.
- Receiver upgrades

Long-term:

- More collecting area (larger telescopes).

Rapidly increasing number of MSPs:

NANOGrav pulsars (in galactic coords): red="classic", blue=recently added (past ~year) From 17 orig sources -> 27 by later this year.

Driven by Fermi MSP discoveries; also GBNCC (GBT), PALFA (Arecibo), HTRU (Parkes) ongoing pulsar surveys.

New high-precision timing instrumentation: (Demorest, Ransom, Ford, McCullough, Ray, Brandt, Duplain)

- GUPPI = Green Bank Ultimate Pulsar Processing Instrument
- Fully utilizes GBT low-freq receivers.
- Incorporates best features of 5 previous backends at GB.
 - Both search and timing/coherent modes.
 - 100, 200, or 800 MHz total BW
 - 8-bit ADCs, full-Stokes, flexible parameters (# channels, integration time, etc).

GUPPI architecture: ~1 MHz PFB in FPGAs Coherent dedisp in GPUs

10 Ge switch; 24 Gb/s

Coherent GUPPI first light PSR B1937+21, 1100--1900 MHz

GASP band

J1614-2230 Shapiro delay timing with coherent GUPPI:

J1614-2230 is a NANOGrav PTA target

GUPPI gives 1 us timing in 1 minute.

Orbital inclination = 89.17(2) deg!

Pulsar mass = 1.97(4) solar!

(Demorest, Pennucci, Ransom, Roberts, Hessels, Nature, 2010)

Expected GW sensitivity improvement vs time:

Improving existing telescope resources:

Current usage ~3% total time at GBT/Arecibo.

Wideband receiver upgrades (~0.8-3 GHz)

"PUPPI" for Arecibo is in progress.

EVLA provides ~GBT sensitivity, and octave-BW receivers.

First EVLA pulsar detection! (Feb 2011, PD, A. Deller)

Future telescopes

Main criteria: size (G/T) and location (sky coverage). Freq coverage ~0.8-3.0 GHz.

- MeerKAT (South Africa)
 - 64 13.5-m dishes. ~GBT sensitivity
 - Contributions: Add'l area, receivers, backends, expertise.
- FAST (China)
 - One 500-m dish! ~3x Arecibo sensitivity
- Dedicated PTA telescope?

Conclusions/Summary:

- 1. NANOGrav project aims to detect nHz-freq GW using pulsar timing.
- 2. Current best timing results at the ~40 ns level. GW detection is possible within the next ~5-10 years.
- 3. Ongoing discovery of new MSPs.
- 4. GUPPI instrument provides order-of-magnitude observational improvement.
- 5. Exciting near-future improvement from new telescopes (EVLA, MeerKAT, FAST, ...).