First Results from the Q/U Imaging ExperimenT (QUIET)

Jonathan Zwart
for the QUIET Collaboration
(Fifty scientists, 14 Institutions, five countries)

jtlz2@astro.columbia.edu

9 March 2011

QUIET — A DIFFERENT ANGLE

- Polarization-sensitive, ground-based CMB-imaging experiment
- Observes at 40 GHz and at 90 GHz
- Searching for primordial gravitational waves from inflation (see Church talk)

SCIENCE AIMS

- Competitively constrain or detect B-mode signal from primordial gravity waves
- Measure first three peaks of E-mode power spectrum
- Measure amplitude of polarized Galactic-synchrotron foreground

TELESCOPE

ENABLING TECHNOLOGY — POLARIMETER-ON-A-CHIP

- Coherent HEMT polarimeter
- 180° (90°) hybrid leads to two measurements of Q (U)

LARGE ARRAYS NOW VERY FEASIBLE

Q/U IMAGING EXPERIMENT

Band	Q	W
Frequency/GHz	43	95
Optics	1.4-m Mizuguchi–Dragone	
Field-of-View FWHM/	27	12
ℓ range	25–475	25–1000
HEMT modules	17	84
Differential T assemblies	2	6
Sensitivity/ μ K s $^{1/2}$	60–70	
Observing time/hours	3500	7600
Location	Atacama Desert, Chile	

- Year-round access from nearby San Pedro de Atacama
 - high (5080 m) and dry (median PWV 1.2 mm)
 - Efficiency \approx 65 per cent; 24 hours/day (excl. poor weather, engineering)

CHARACTERISTICS

- Distinct most other experiments designed to measure B modes use bolometers
- One of the most sensitive polarimeter arrays to date (60–70 μ Ks $^{1/2}$ in each band)
- Particular systematic advantages:
 - Two levels of phase-switching (4 kHz, 50 Hz)
 - Simple optical design: mirror has low cross-pol and low sidelobe pick-up
 - Outscan 1/f
 - Boresight rotation
 - Sky rotation
 - Sensitive to different (and low) foregrounds

FREQUENCIES AND FOREGROUNDS

- Grey bars show Ka, Q and W bands
- For $\ell = 80-120$ (B peak), dominant foreground is Galactic synchrotron
- Eventually combine with POLARBEAR and ABS observations of the same fields (150, 220 GHz)

OBSERVING FIELDS

- Selected to minimize Galactic synchrotron (given scheduling)
- Fields $(15 \times 15 \text{ deg}^2)$: J0048-48, J0512-39, J1204-39, J2244-36

Analysis Methodology

- Blind analysis (uncommon in RMS?)
 - Full power spectra are not viewed until data and analyses pass stringent null tests

- Two independent analysis pipelines for map-making and power-spectrum estimation
 - Maximum likelihood
 - Pseudo- C_{ℓ}

DATA SELECTION AND NULL TESTS

- Data selection (weather, fit to noise model, faulty detectors, etc.)
 - Efficiency \approx 70 per cent, of which
 - 91 per cent common between the pipelines

- Split data in half along some some axis and ask:
 - Are jackknife spectra (and maps) **null** (consistent with noise)?
- 20–40 null tests, e.g. Q v U diodes, array orientation, temporal splits
- 42 (21) jackknives \times 9 ℓ bins \times 3 modes (EE, EB, BB) \simeq 1100 points
 - → strong discriminating statistics

Systematic Errors (or Lack Thereof)

- Systematic uncertainties are lowest demonstrated in this ℓ range for a B-mode experiment
- Far from limited by systematics (good for the future)

Maps

EE AND BB POWER SPECTRA

- Distinct pipelines give consistent spectra
- Polarization only: $r = 0.35^{+1.06}_{-0.87}$, r < 2.2 (95 per cent)
- CMB–1 is contaminated in **lowest** ℓ bin at 3σ by Galactic foreground (consistent with extrapolation from WMAP K)
- Analysis of W-band data to come

EE AND BB POWER SPECTRA

SUMMARY

- With QUIET we have taken a total of 11,000 hours of data in Q and W.
- Q-band data have been analysed; W-band data being analysed now.
- A comprehensive analysis has allowed us to place a competitive limit on B-mode power and to constrain foregrounds.
- QUIET's systematics are both unique and low for these types of observations.
- Modular polarimeter is a key enabling technology.
 - → A 500-element array is planned.
- See http://quiet.uchicago.edu/results for more details.
- See astro-ph.CO/1012.3191 for results.