

Cosmological Galaxy Surveys: The Molecular Perspective Atomic &

Steven T. Myers (NRAO)

*National Radio Astronomy Observatory, Socorro, NM

New Worlds, New Horzions, New Science - 09 Mar 2011

Why this talk?

- Previous speakers have demonstrated the great promise of galaxy studies this decade
 - galaxies are full of incendiary gas, abrasive dust grains, noxious chemicals, and nuclear waste...
- But, they can also be a force for good
 -COSMOLOGY!!!
- I present sundry assertions and speculations on exploring this final frontier
 - some trailheads, if not a roadmap
 - a possible path forward

Science Goal: Cosmology

- Cosmological Galaxy Surveys
 - identify and count galaxies (traditional survey)
 - Spectra for 10^4 10^9 galaxies to z > 1.5 in > Gpc volume
 - cosmological parameters
 - "Dark Energy" (DE) via H(z) measurements (BAO &c)
 - growth of structure (counts, galaxy evolution)
 - a large galaxy database for (ga)strophysical studies
 - alternative: "intensity mapping" (angular power spectrum)
 - targeted cosmology experiments
- also Galaxy Continuum Photometry
 - synchrotron / free-free in Milky Way-like galaxies
 - weak lensing studies (DE), AGN surveys

A Game of Questions

- The Themes
 - Cosmic Dawn
 - Physics of the Universe
 - Discovery, Origins, Cosmic Order, Frontiers of Knowledge
- The Questions
 - How do cosmic structures form and evolve?
 - Why is the universe accelerating?
 - What is the fossil record of galaxy assembly and evolution from the first stars to the present?
 - How do baryons cycle in and out of galaxies and what do they do while they are there?

A multi-purpose galaxy survey for all!

The Probes: Key UFIR Lines

- 1 Atomic Hydrogen (weak transition)
 - HI line (rest 1.42 GHz, z=1.5 at 568 MHz)
 - single line in "clean" part of spectrum
 - single line redshift determination almost assured
- 2 Molecular CO (strong transition)
 - CO ladder (1-0 rest 115.27 GHz, z=1.5 at 46.11 GHz)
 - whole J ladder of lines (115,230,345,460...)
 - no ambiguity in redshift if multiple transition seen
 - forested area of spectrum
 - danger: many weaker lines could contribute to correlated signal
- 3 High-J CO and C+
 - CCAT: Stacey, Glenn talks (possibly the winning approach)

Landscape: Galaxy Spectra

Lines and continua of star-forming galaxies see Carilli talk

From Myers et al. NAA Astro2010 white paper

S. T. Myers

New Worlds, New Horzions, New Science – 09 Mar 2011

Launchpad: High Redshift Galaxies

- mm/sub-mm/IR
 - dusty galaxies, ULIRGS,
 - we have the ABCs:
 - ALMA, BLAST, CARMA, CCAT, ...
 - and ACT, APEX, ...

sub-m (HI)

– local universe z<0.2: Arecibo, EVLA, GBT, Parkes, &c

0.25 mm

Distant Galaxies

- GBT correlation with O/IR z=0.8 (Chang et al.)
- pave the way: need next-gen facilities for high-z
- our departure point: cm

- redshifted CO lines (EVLA, GBT), continuum

State of the Art: EVLA

• EVLA early science:

Approaching first light: molecular gas in z~6 quasar host galaxies
▶ Coeval formation of SMBH and massive galaxies within 1Gyr of Big Bang

Wang, Wagg et al.

New Worlds, New Horzions, New Science - 09 Mar 2011

Blue Skies over the EVLA

Extended, low excitation CO in z~2.3 SMG (Ivison ea)

Courtesy C. Carilli

Multitransition CO study of most distance SMG z=5.3 (Riechers, Capak ea)

Cosmology Projections

Galaxy counts and power spectra – Righi et al. (arXiv:0805.2174)

Fig. 3. The predicted differential source counts for the CO lines at 30, 70, and 100 GHz, for a spectral resolution $\Delta v/v_{obs} = 10^{-3}$. The vertical line is the expected sensitivity of ALMA to the line emission, computed for the same spectral resolution and an integration time of 3 hours.

Cosmology Projections

- Galaxy counts and power spectra
 - Righi et al. (arXiv:0805.2174)
 - Gong et al. (arXiv:1101.2892)
 - Carilli (arXiv:1102.0745)
- Upshot
 - ~10/sq.deg. Δz ~10⁻³ at 0.1 mJy at 30 GHz B=30MHz
 - EVLA ~ 30 min integration
 - integrated signals ~1 μK (need Bt~10¹⁵ for Tsys~30K)
 - for 1 GHz BW need Msec integration
 - fluctuations 0.1 this level for $\Delta z < 10^{-2}$
 - want equivalent of multiple "beams", careful calculations
 - cross-correlation with galaxies and HI (e.g. EOR)

Projections

Galaxy counts and power spectra – Righi et al. (arXiv:0805.2174)

Projections

- Galaxy counts and power spectra
 Righi et al. (arXiv:0805.2174)
 - Gong et al. (arXiv:1101.2892)

(L) CO power-spectrum (M) HI power-spectrum (R) CO-HI cross-power CO z=7 @ 14.4 GHz HI z=7 @ 177 MHz

Instrumenting the Science: 2010-2020

- Current facilities, including
 - Expanded Very Large Array EVLA (NM)
 - Arecibo Observatory AO (PR)
 - Green Bank Telescope GBT (WV)
 - ALMA (Chile), ACT, APEX, SPT...
 - CARMA (CA), SMA, ...
- Later this decade, including
 - ASKAP (Australia)
 - CCAT (Chile)
 - LMT (Mexico)
 - HERA-II (?)
 - MeerKAT (S.Africa)
- We have a wealth of instruments! Use them.

Instrumenting the Science: Innovate!

Example: DACOTA (Bower et al. poster)
 Dense Array for COsmology and Transient Astrophysics
 An Array Concept for this Decade
 Geoffrey C. Bower, David R. DeBoer, Matt C. Fleming (UC Berkeley)

- Example: GBT cameras
 - spectroscopic cm surveys, counterpart to LMT and CCAT

New Worlds, New Horzions, New Science - 09 Mar 2011

Final Fantasy MMXXV: SKA

Billion Galaxy HI survey to z > 1.5ullet

Instrumenting the Science: 2020+

- Ultimate Radio Cosmology
 - m: HERA-III
 - sub-m: the Square Kilometer Array (SKA)
 - cm: the "North America Array" (NAA)
- Towards a North America Array
 - future evolution of NA facilities (EVLA, GBT, VLBA, &c)
 - collecting area: 10 x EVLA (half on "VLB" baselines?)
 - key science ("SKA High"):
 - astrometry
 - "ALMA science" at high-z and in obscured regions
 - detailed (sub-arcsecond) imaging as well as detection
 - for more info:
 - http://www.nrao.edu/nio/naa/

North America Array: (r)Evolution

- A heterogeneous array <u>network</u>
 - e.g. EVLA + GBT + VLBA (20% there already!)
 - baselines from 10-m to 3000-km not homogeneous!
 - not all parts operate together all the time
- New model for facility program development
 - community must have science ownership (not NRAO)
 - network sites throughout North America : opportunities
 - local university involvement (like old US VLB Network :)
 - can antennas be affordable (commodity, like ATA concept)?
 - the long view : a phased approach
 - need not build all at once, adopt "HERA-like" strategy
 - different parts different timescales (e.g. CO vs. astrometry)

What Next?

- Molecular Galaxy Cosmology
 - needs more science development (decade of discovery)
 - warning: still need to crunch the numbers in detail
 - what is the right approach (cm vs mm/smm)? multiple probes?
- A New Decade of Innovation
 - investigation of more novel concepts (e.g. DACOTA)
 - TDP2: can we make cm-capable elements cheaper?
- Towards a North America Array
 - good words in Astro2010, look to Astro2020 and beyond
 - science ownership: the University community future
 - a chance to evolve and adapt the facility paradigm
 - need community proponents and <u>champions</u>
 - I hope some are in this room!