

Connections

Dan Schwartz
Mike Garcia, Paul Green, Scott Wolk, Jan Vrtilek
Harvard-Smithsonian Center for Astrophysics
Chandra X-ray Observatory

About | Research | Education & Outreach | Facilities | Opportunities | Events

Frontier Questions

- 1. How do cosmic structures form and evolve?
- 2. How do supermassive black holes form and grow?
- 3. What are the flows of matter and energy?
- 4. How do black holes influence surroundings?

These can be addressed considering studies of clusters of galaxies and of large scale jets from AGN.

Clusters: X-rays give integrated energy inputs from Radio plasma

Jets: X-rays and Radio from the same relativistic electron spectrum

Cluster cooling flows: the problem

- X-ray brightness distributions: examples
- with cooling core

- without cooling core
- Fabian & Nulsen (1977) "Cooling gas in the cores of clusters can accrete at significant rates onto slow-moving central galaxies"
- Strong surface brightness peak → dense gas → short cooling time
- Hot gas radiates gas must cool unless reheated
- But *large amounts of cool gas are <u>not detected</u>:*X-ray spectroscopy (XMM RGS: Peterson et al 2001, 2002 et seq)

 limits cooling gas to ≤ 10-20% of expectation from a cooling flow model

Stopping cluster cooling flows--a (top level) answer: AGN in central elliptical galaxies...

... are the prime candidate for a feedback process that reheats cooling gas and regulates cooling flows

on scales from galaxy groups to massive clusters:

Small X-ray-bright galaxy group (Gitti et al 2010). GMRT 235 MHz contours overlaid on *Chandra* data.

Most powerful measured outburst in a massive cluster (*Chandra*, HST, and VLA: McNamara et al 2006).

Radio (red) and X-ray (blue) Required to understand Feedback

M87. The X-ray structure was induced by $\sim 10^{58}$ erg outburst that began 10 Myr ago (Forman et al. 2005). The persistence of the delicate, straight-edge X-ray feature (part of the South West filament) indicates a lack of strong turbulence.

The regulation of cooling flows in galaxy clusters and groups: Radio/X-ray synergies

<u>Low-frequency observations</u>: 100's of MHz (continuum)

→ yield history and energetics of AGN outbursts

Now: VLA, GMRT

Future: LOFAR, ASKAP,

→ yield masses and kinematics of cold molecular gas (on path to star formation and feeding of central black hole)

Now: SMA, IRAM/PdB

Future: ALMA

Hydra A: X-ray (Chandra) with superposed radio

Joint low-frequency radio and X-ray observations yield

- age and history of outburst
- geometry of jets and cavities (sometimes)
- physical parameters of hot gas and estimates of magnetic fields
- measurement of metallicity distributions ...

← AWM 4: 610 MHz image (GMRT) with 4.9 GHz insert (VLA) for core

AWM 4: 235-610 MHz spectral index image, with 235 MHz contour overlay

Giacintucci et al 2008

But important data is missing

- study at higher redshifts $(z \ge 0.5)$ needed
- why may powerful outbursts (as revealed by effects on ICM) appear weak in optical and radio?
- mechanisms of jet formation and interaction with surroundings; mechanisms of energy dissipation
- fueling of AGN outbursts
- reduced amount of cooling material => star formation?

Molecular line observations: ALMA

What happens to cluster and group gas that does cool?

Star formation

- Modest rates of SF are common is cluster- and group-center ellipticals
- Attributed to cooling flows or to mergers
 (but only cooling flows provide the needed feedback mechanism)

Feeding of central AGN?

- Could be through accretion of hot atmosphere (Bondi mechanism), stars, or cold gas
- Some cold gas will be molecular, and traceable though line emission
- CO has been detected in cores of central galaxies in cooling-flow clusters
 - Several single-dish surveys (Edge 2001, Salome & Combes 2003 et seq)
 - $\sim 25 30\%$ of targets show detections
 - Gas masses few x 10^8 to few x 10^{10} M_{sun}

Molecular gas in cooling cores in detail

- Interferometry required; low-lying CO rotational transitions are preferred
- SMA and Plateau de Bure have been used
- With current instrumentation: "the best target in the sky": Perseus A = NGC 1275 = 3C84
 - Brightest cluster in X-ray sky
 - Only target at all well-studied in CO

Radio spectral line observations provide key kinematic information

Chandra image of Perseus, showing multiple X-ray cavities

Perseus central 40" in J=2-1 line of CO, from SMA data. (Lim et al 2008)

ALMA will provide this or greater level of detail for *numerous targets*, with *fast integration times*, providing a meaningful overview of role of cold gas.

Accurate X-ray Temperatures and measurement of Turbulence required for S/Z measurements

At z=2, the global temperature and abundances can be measured to an accuracy of $\pm 3\%$ for kT, and to $\pm 3.5\%$ for O and Mg, $\pm 25\%$ for Si and S, and $\pm 15\%$ for Fe.

IXO spectrum of Fe XXV lines shows that turbulence of ~150 km/s or ~200 km/s may be distinguished from thermal broadening alone. Simulated IXO/XMS data in black, models in color.

X-ray and radio track within a factor 2 =>Origin from a single electron population

Low energy cutoff to the relativistic electrons:

PKS 1055+210 z=1.11

Symmetric lobes show the existence of "invisible," symmetric counterjet.

High Redshift Jets

Cheung et al., 2006ApJ..650..679

z = 3.89

Siemiginowska et al. 2003ApJ...598L..15

Activity in the early universe. Ratio f_x/f_R should increase $\approx (1+z)^4$

Calculation of Kinetic Flux: PKS 1354+195

Harris et al, in preparation Schwartz et al., in preparation

Long, straight jet. Angle and geometry may be nearly constant along jet. Allow $\Gamma \neq \delta$, assume kinetic flux is constant!

Kinetic Flux: PKS 1354+195

Mean angle, 5° to 7°. Angle deviation $\delta\theta \approx \pm 1$ °. Kinetic Flux = $9x10^{46}$

Chandra Joint Programs

- Chandra peer review can award time on our Joint Partner facilities, for projects that are "fundamentally multiwavelength"
- Avoids proposal double jeopardy
- Standards are high and CXO full allotments *rarely* used

Joint Partner Agreements

- HST: 100 orbits, 400ks reciprocal
- XMM: 400 ksecs, reciprocal
- Spitzer: 60 hours
- Suzaku: 500ksec
- NOAO: up to 5% of all telescopes
 - Full proposal needed for Gemini (int'l TAC)
- NRAO: 3% of EVLA, VLBA and GBT observing time
 - maximum of 5% in any configuration/time period
 - looking forward to including ALMA (int'l TAC)

Backup slide

Eleven Decades in Frequency Required to understand Growth of SMBH

Sensitivity of future key observatories, along with the spectrum of a galaxy with strong star formation and a merging massive binary black hole, like NGC 6240 at z=7. Below 10^{16} Hz emission is ultimately due to nuclear fusion and above to gravity. Only IXO is able to detect unambiguously the direct signal from an accreting binary super-massive black hole.

Outbursts from Clusters to Galaxies

SOURCE	SHOCK RADIUS	ENERGY	AGE	MEAN POWER	ΔΜ
	(kpc)	$(10^{61} \mathrm{erg})$	(My)	(10^{46} erg/s)	$(10^8 \mathrm{M_{sun}})$
MS0735.6	230	5.7	104	1.7	3
Hydra A	210	0.9	136	0.2	0.5
M87	14	0.0008	11	0.0024	0.0005
NGC4636	5	0.00006	3	0.0007	0.00003

- Clusters to galaxies (kT = 5, 2.5, 0.7)
- Late growth of SMBH in "old" stellar population systems
- Grow stellar mass as well see moderate star formation
- Birzan et al. (2004) enough energy in bubbles to balance cooling in 50% of systems

Deriving magnetic field, H, and Lorentz factor, Γ

Doppler factor $\delta=1/(\Gamma(1-\beta \cos\theta))$

 $H_{min} = H / \delta$

 $H_{cmb} = \prod_{i=1}^{n} H_{FM}$

 $H_{cmb} = H_{min}$

Unknown angle usually finessed by taking $\Gamma=\delta$, or $\Gamma=$ some fixed number.