
Introduction to CASA
Juergen Ott (CASA project scientist)
Crystal Brogan (CASA ALMA subsystem scientist)

Steven Myers (CASA EVLA subsystem scientist)
Jeff Kern (CASA manager)

EVLA

ALMA

2 �

•  CASA is the offline data reduction package for ALMA and the EVLA
(data from other telescopes usually work, too, but not primary goal of
CASA)

•  C++ bound to Python (plus some Qt or other apps)
•  Import/export data, edit, calibrate, image, analyze
•  Also supports single dish (based on ASAP)
•  CASA has many tasks and a LOT of tool methods
•  Easy to write scripts and tasks, including contributed scripts/tasks
•  We have a lot of documentation, reduction tutorials, helpdesk
•  CASA has some of the most sophisticated algorithms implemented

(multi-scale clean, Taylor term expansion for wide bands, W-term
projection, OTF mosaicing, etc.)

•  We have a active Algorithm Research Group, so more goodness to
come

CASA (Common Astronomy Software Applications)

3 �

 Outline

•  CASA startup
•  CASA basic python interface
•  Tasks and tools
•  The Measurement Set
•  Data selection syntax
•  Visualization tools
•  Data analysis
•  User support/Documentation

4 �

CASA (Common Astronomy Software Applications)

"   Current version: 3.3.0 (release r16856 built 2 Nov 2011)
"   New releases about every 6 months (around 4/15 and 10/15).

"   For download: casa.nrao.edu Linux, Mac OS X

"   “release”, “test” and “stable” versions available at NRAO/ESO/ALMA and via
download

 > casapy - latest release: underwent lots of testing, updated documentation
 > casapy-test - cutting edge capabilities, no documentation, bugs
 > casapy-stable - less bugs but also less features, could be a release

For the workshop we will use casapy 3.3.0 r16856

5 �

CASA Startup
$ casapy
CASA Version 3.2.1 (r15198)
 Compiled on: Fri 2011/05/27 02:52:18 UTC

 For help use the following commands:
 tasklist - Task list organized by category
 taskhelp - One line summary of available tasks
 help taskname - Full help for task
 toolhelp - One line summary of available tools
 help par.parametername - Full help for parameter name
 Single Dish sd* tasks are available after asap_init() is run

Activating auto-logging. Current session state plus future input saved.
Filename : ipython.log
Mode : backup
Output logging : False
Raw input log : False
Timestamping : False
State : active
CASA <2>:

6 �

CASA Interactive Interface
•  IPython (ipython.org)
•  Features:

–  shell access
–  auto-parenthesis (autocall)
–  command history
–  session logging

•  ipython.log – ipython command history
•  casapy.log – casa messages

–  numbered input/output
–  history/searching

7 �

Basic Python tips

•  to run a .py script:

execfile(‘<scriptname>’)

example: execfile(‘ngc5921_demo.py’)

•  indentation matters!

–  be careful when doing cut-and-paste to Python

–  cut a few (4-6) lines at a time

•  Python counts from 0 to n-1!

•  variables are global when using task interface

•  tasknames are objects (not variables)

8 �

Tasks and tools in CASA

•  Tasks - high-level functionality
–  function call or parameter handling interface
–  these are what you should use in tutorial

•  Tools - complete functionality
–  tool.method calls, used by tasks
–  sometimes shown in tutorial scripts

•  Applications – some tasks/tools invoke standalone apps
–  e.g. casaviewer, casaplotms, casabrowser, asdm2MS

•  Shell commands can be run with a leading exclamation
mark !du –hs

Key Tasks

"   To see list of tasks
organized by type:

tasklist

Key Tasks

"   To see list of tasks
with short help:

taskhelp

11 �

Task Interface
"   examine task parameters with inp :

12 �

Task Interface
•  standard tasking interface
•  use parameters set as global Python variables

<param> = <value>

(e.g. vis = ‘ngc5921.demo.ms’)
•  parameter manipulation commands

•  inp, default, saveinputs, tget, tput
•  execute

<taskname> or go (e.g. clean())
•  return values (except when using “go”)

•  some tasks return Python dictionaries, e.g.
myval=imval()

13 �

Task Execution

•  two ways to invoke:
–  call from Python as functions with arguments

taskname(arg1=val1, arg2=val2, ...), like
clean(vis=‘input.ms’, imagename=‘galaxy’,selectvis=T,

robust=0.5, imsize=[200,200])
unspecified parameters will be defaulted (globals not

used)
–  use standard tasking interface

use global variables for task parameters
–  see Chapter 1.3 in Cookbook

14 �

Expandable Parameters

"   boldface parameter are expandable

15 �

Parameter Checking

sanity checks of parameters in inp :

erroneous
values in red

16 �

Help on Tasks
"   In-line help:
>help clean OR >pdoc clean

17 �

Tools in CASA
"   What if there’s no task?
 use CASA tools! (tasks are built upon tools)

"   CASA Toolkit underneath tasks
"   core AIPS++ code (mostly in C++)

"   tools are functions.methods
"  call from casapy as <tool>.<method>()
"  default tool objects are pre-constructed

"  e.g. imager (im) , calibrater (cb), ms (ms) , etc. (see
toolhelp)

See Miriam’s talk on Toolkit tomorrow!

18 �

The Measurement Set

"   The MS is a directory on disk
"  the MAIN table in table.* files
"  also contains sub-tables

"  e.g. FIELD, SOURCE, ANTENNA, etc.
"  sub-tables are sub-directories
"  to copy must cp -rf to get contents (tarball to transfer)
"  Best to remove ms with rmtables(‘filename’)

"  Or rm –rf
"   WARNING: renaming a MS can break cal-table dependencies

"  (we are working on making cal-tables standalone)

19 �

Example MS

"   Example: ls ngc5921.usecase.ms

"   ls ngc5921.usecase.ms/FIELD

20 �

MAIN Table Contents

"   Example using task browsetable: (application casabrowser)

21 �

Data Selection Example
"   standard selection parameters

"  e.g. for task gaincal:

"  field and spw common standard selections
"  expandable selectdata with other selections as sub-parameters

22 �

Data Selection Syntax
•  see Chapter 2.5 of Cookbook

–  field - string with source name or field ID
•  can use ʻ*ʼ as wildcard, first checks for name, then ID
•  example: field = ʻ1331+305ʼ ; field = ʻ3C*ʼ ; field =
ʻ0,1,4~5ʼ

–  spw - string with specwindow ID plus channels
•  use ʻ:ʼ as separator of spw from optional

channelization
•  use ʻ^ʼ as separator of channels from step/width
•  example: spw = ʻ0~2ʼ ; spw = ʻ1:10~30ʼ ; spw =
ʻ2~5:5~54^5ʼ"

23 �

Selection Syntax

•  see Chapter 2.5 of Cookbook
–  antenna - string with antenna name or ID

•  first check for name, then ID (beware VLA name 1-27, ID
0-26)

•  example: antenna = ʻ1~5,11ʼ ; antenna = ʻEA*ʼ, ʻ!VAʼ"
•  Baselines: ʻEA01&EA10ʼ

–  timerange - string with date/time range
•  specify ʻT0~T1ʼ , missing parts of T1 default to T0, can

give ʻT0+dTʼ
•  example: timerange = ʻ2007/10/16/01:00:00~06:30:00ʼ"

24 �

Calibration

•  Data structure: 3 columns (data + 2 scratch columns):
•  DATA column (raw data)
•  MODEL (Fourier transform of source model onto data)
•  CORRECTED_DATA (calibrated data)
•  Columns created when needed, this may take some time
•  Sets of calibration tables applied incrementally (apply all

previous calibration tables before solving/application)
•  Applycal changes CORRECTED_DATA (can split to DATA)
•  Refactoring underway to work without scratch columns

25 �

Calibration continued

•  Solvers (e.g. bandpass, gaincal, polcal, blcal)
•  Based on data x calibration - model
•  Uses Hamaker-Bregman-Sault Measurement Equation

formalism
•  Generate calibration tables by type, e.g. bandpass (B), gain

(G,T), pol leakage (D), pol angle (X), place into equation
•  Some types have channel dependencies (Df,Xf) or

polynomial (BPOLY) or spline (GSPLINE) representations
•  Working on making caltables applicable across different MS

Imaging

•  Deconvolution using clean task
•  Grid data onto uv-plane, transform to residual image, find

model components (minor cycles), transform back to data and
subtract to form residual data (major cycles), repeat [Cotton-
Schwab clean]

•  Control of algorithms used (e.g. csclean, mosaic), mapping to
output cube planes (mfs, channel, velocity, frequency)

•  Multi-frequency synthesis (mfs) for continuum, including
higher order Taylor terms (intensity,alpha,…)

•  Mosaicing using convolutional gridding to single uv-plane, plus
uv-faceting

26

27 �

Visualization Tools

•  Data needs to be displayed to understand it!
–  Can be a challenge for large datasets

•  Visibilities: plotms, msview
•  Images: viewer, imview
•  Calibration tables: plotcal (soon plotms)
•  Any table values: browsetable
•  Single dish: sdplot

•  Plot anything: use Python’s matplotlib

28 �

PlotMS

•  plotms

29 �

Image Viewer

•  Image Viewer

30 �

Image Viewer

•  Displaying cubes
•  Movies
•  Channel maps

Right Ascension

D
ec

lin
at

io
n

31 �

Image Viewer

•  Displaying cubes
•  Movies
•  Channel maps

Right Ascension

D
ec

lin
at

io
n

32 �

MSViewer

•  MS Viewer

33 �

Plotcal

•  MS Viewer

34 �

Plot Anything - matplotlib

Image analysis

•  specfit: to fit 1-dimensional gaussians and/or polynomial
models to an image or image region.

•  imfit : fit one or more elliptical Gaussian components on
an image region(s).

•  Also immath, imstat, imval
•  Currently many gaps, use Python plus toolkit
•  Contributed scripts can be used (and submitted by you).
•  Contributed scripts are currently available at:

 http://casaguides.nrao.edu/  Data Reduction Guides
  EVLA Guides  Contributed Scripts

Ahead to the Future - Parallelization
•  Large ALMA & EVLA datasets are challenging workstations

–  Large data volumes = expensive I/O
–  High sensitivity = expensive CPU
–  Want these balanced! (maybe use GPUs also eventually)

•  CASA High Performance Computing Initiative
–  Parallelize code at all levels for use on cluster
–  Parallelize data so I/O can be easily parallelized
–  Process control
–  Make this all available to users as part of casa

•  Not a special purpose build
•  Some capabilities available now, you can use our cluster too!

36

Parallelized Data Flow (courtesy J.Robnett)

37

38 �

Getting User Support

•  CASA Home: http://casa.nrao.edu
–  Cookbook, online reference, download, example scripts

•  CASAguides.nrao.edu
–  For data reduction tutorials, tips, tricks, …

•  “Helpdesk” at help.nrao.edu
–  Submit questions, suggestions, bugs (needs my.nrao.edu registration)

•  CASA mailing lists: casa-announce, casa-users

•  CASA topic in NRAO Science Forum

39 �

CASA Documentation
•  Homepage: http://casa.nrao.edu  Using CASA

•  CASA Reference Manual & Cookbook:
"   http://casa.nrao.edu/Doc/Cookbook/casa_cookbook.pdf
"   http://casa.nrao.edu/docs/UserMan/UserMan.html

•  CASA Task Reference (same as inline help):
"   http://casa.nrao.edu/docs/TaskRef/TaskRef.html

•  CASA Toolkit Manual:
"   http://casa.nrao.edu/docs/casaref/CasaRef.html

•  CASAguides Wiki:
"   http://casaguides.nrao.edu

•  Python:
"   http://python.org/doc (e.g., see Tutorial for novices)

•  IPython:
"   http://ipython.org

•  matplotlib:
"   http://matplotlib.sourceforge.net/

Large but
detailed!

