
Essential Radio Astronomy 2018 Problem Sets

Problem Set 1

1. (4 points) The cosmic microwave background (CMB) radiation has a nearly perfect blackbody spectrum
with temperature T ≈ 2.73 K. In the low-frequency limit, calculate the slope of the CMB curve as plotted
in the figure below (ERA Figure 1.4).

2. (4 points) The “radio” background is produced by radio sources having power-law spectra of the form

Sν ∝ να

where the exponent α is called the spectral index. For the typical radio-source spectral index α ≈ −0.7,
calculate what the slope of the “radio” line should be in ERA Figure 1.4.

3. (4 points) In 1903 the Einwegspiegel Mirror Company of Bern, Switzerland submitted a patent applica-
tion for a one-way mirror for use by psychologists who wanted to observe their subjects without being
seen themselves. The application stated that the one-way mirror had different special coatings on sides
“a” and “b” such that light going from side “a” to side “b” went through the mirror more easily than
light going from side “b” to side “a”. The application was rejected by patent clerk A. Einstein. Why?

4. (8 points) At its closest approach on July 28, 2018, the planet Mars:
(1) was d ≈ 5.8× 107 km from the Earth,
(2) its angular diameter was θ ≈ 25 arcsec, and
(3) its ν = 1.4 GHz flux density was S ≈ 0.14 Jy.

a. (3 points) What was the Rayleigh-Jeans brightness temperature Tb of Mars at ν = 1.4 GHz?

b. (3 points) The 1.4 GHz radar reflectivity of Mars is r ≈ 0.1. If Mars is a purely thermal source, what
is the physical temperature T of Mars?

c. (2 points) Which of the three pieces of information given above wasn’t needed to answer parts (a)
and (b) of this question?



Problem Set 2

5. (4 points) One definition of the “habitable zone” around a star is the region in which liquid water could
exist on a planet. Estimate the inner and outer radii rin and rout of the habitable zone around the Sun
by calculating the distance from the Sun at which the radiative equilibrium temperature of an isothermal
black body is the boiling temperature of water (Tin ≈ 100 C ≈ 373 K) and the distance at which water
freezes (Tout ≈ 0 C ≈ 273 K). (To be nearly isothermal, an actual planet or asteroid would have to be
spinning fast enough and/or have enough atmosphere that its daytime and nighttime temperatures are
nearly equal.) Express rin and rout in units of “astronomical units” (AU), where 1 AU ≈ 1.496×1013 cm
is defined as the mean radius of the Earth’s orbit around the Sun.

6. (4 points) The Rayleigh-Jeans brightness temperature Tb defined by ERA Equation 2.33 is close to the
physical temperature T of a blackbody source only in the low-frequency limit ν � h/(kT ). Calculate
the ratios (Tb/T ) for the T = 2.73 K cosmic microwave background (CMB) at frequencies ν = 1, 10,
100, and 1000 GHz.

7. (6 points) The classical Larmor’s formula (ERA Equation 2.143) for radiation from an accelerated
charged particle implies that the electron orbiting the proton in a hydrogen atom will radiate away
its kinetic energy in a small fraction of a second, and the atom will collapse. This striking failure was
one of the problems in classical physics that led to the development of quantum mechanics. A classical
hydrogen atom consists of an electron in a circular orbit around a proton, with the centrifugal force
mev

2
e/r0 balancing the Coulomb force e2/r20. Here r0 = 5.3 × 10−9 cm is the orbital radius, called the

Bohr radius. The classical radiative lifetime t of such an atom is the electron kinetic energy E divided
by the Larmor power radiated when r = r0. Estimate t.

8. (6 points) As a plane wave of electromagnetic radiation passes a free charged particle initially at rest,
the electric field E of that radiation will accelerate the particle, which in turn will radiate power in
all directions according to Larmor’s equation. This process is called scattering rather than absorption
because the total power in electromagnetic radiation is unchanged—all of the power extracted from the
incident plane wave is reradiated in other directions. For a free electron of charge e and mass me, the
geometric area that would intercept this amount of scattered power from the incident plane wave is
called the Thomson scattering cross section σT. Derive ERA Equation 5.33 for σT:

σT =
8π

3

(
e2

mec2

)2

.
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Problem Set 3

9. Many of the Fourier transform theorems in ERA Appendix A.6 can be derived easily, starting from the
definition of the Fourier transform F (s) of the function f(x) (ERA Equation A.1):

F (s) ≡
∫ ∞
−∞

f(x)e−2πisxdx .

For example, the addition theorem (ERA Equation A.1) for the Fourier transform H(s) of the sum
h(x) = f(x) + g(x) is simply

H(s) =

∫ ∞
−∞

[f(x) + g(x)]e−2πisxdx

H(s) =

∫ ∞
−∞

f(x)e−2πisxdx+

∫ ∞
−∞

g(x)e−2πisxdx

H(s) =F (s) +G(s) ,

which can be written compactly as

f(x) + g(x)↔ F (s) +G(s) .

Two Fourier transform theorems are especially important for radio astronomy—the similarity theorem
and the modulation theorem.

(a) (3 points) Derive the similarity theorem (ERA Equation A.11)

f(ax)↔ F (s/a)

|a|
,

where a is a constant scaling factor. The similarity theorem is used in ERA Section 3.2.4 to
show that the angular beamwidth of an aperture antenna is inversely proportional to the aperture
diameter in wavelengths, D/λ. The bigger the aperture, the narrower the beam.

(b) (3 points) Derive the modulation theorem (ERA Equation A.12)

f(x) cos(2πνx)↔ 1

2
F (s− ν) +

1

2
F (s+ ν) .

The modulation theorem is the basis of the ubiquitous superheterodyne receiver (ERA Section 3.6.4
and Figure 3.39). Let the variable x be time t, so the complementary variable s is frequency ν.
In a superheterodyne receiver the input radio-frequency signal f(t) is multiplied in a mixer by
a monochromatic local oscillator signal cos(2πνLOt) at frequency νLO. The result is that input
radio-frequency signals at frequency νRF are shifted in frequency to the intermediate frequencies
νIF = νRF−νLO and νIF = νRF +νLO. For example, a local oscillator at νLO = 12 GHz can be used
to shift an input radio signal at frequency νRF = 9 GHz down to a lower frequency νIF = 3 GHz
where it is easier to process.

Hint: Rewrite cos(2πνx) as a complex exponential (see ERA Appendix B.3).

10. This question involves performing some image processing using 2-D Fourier Transforms. As for the last
problem set, you will need to use data analysis software like Matlab, IDL, Mathematica, or (recommended)
a scientific install of Python. Please plot all images in greyscale.

(a) (2 points) Black and White Image of You
Your first task is to take a headshot picture of yourself with your phone or laptop and to save it as
a greyscale image at a size of 512x512 pixels. That image will be the basis of your Fourier image
processing experiments. (Note: make sure that you have a true greyscale image and not one with
RGB channels adjusted to appear as greyscale). Show your image.
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(b) (4 points) Amplitudes and Phases
Load your image into your analysis software along with the image of trees found here:
http://www.cv.nrao.edu/~sransom/trees.jpg

Take the Fourier transforms of each image. Calculate the Fourier amplitudes and phases for each
of the transforms. (Note: make sure that you compute the phases correctly so that they can have
values over 2π radians!) Now make two new images where you combine the Fourier amplitudes
from one of the input images with the Fourier phases from the other input image. Show the image
that looks most like you. Does that image contain the amplitudes or the phases from the original
image of you?

(c) (4 points) Image Filtering I
Set the amplitudes of all Fourier frequencies ≤ 20 in the FFT of your image equal to zero. Inverse
FFT and make a new image. (Hint: Be very careful choosing which parts of the Fourier array to
set to zero. The layout of these arrays is implementation dependent. Plotting the log of the Fourier
amplitudes will help. Also remember that there are negative Fourier frequencies!) What type of
filter did you just apply? What parts of the image are accentuated? Plot both the log of the filtered
Fourier amplitudes as well as the new image.

(d) (4 points) Image Filtering II
Set the amplitudes of all Fourier frequencies > 20 in the FFT of your image equal to zero. Inverse
FFT and make a new image. What type of filter did you just apply? What causes the excess ripples
or ringing in the resulting image and how might you mitigate that? Plot both the log of the filtered
Fourier amplitudes as well as the new image.

(e) (4 points) Convolution
Make a two-dimensional symmetric gaussian kernel of FWHM 20 pixels with which to smooth your
image. Then perform the smoothing via FFT using the convolution theorem. (Hint: given the
nature of how FFTs are computed, you may need to re-position your kernel in its input array so
that you get a “nice” output image. Most analysis languages have a special function to do this
for you, for instance fftshift in Matlab and Numpy.) Plot the kernel and the resulting smoothed
image.
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Problem Set 4

11. (6 points) ERA Equation 3.60 relates the height z of a paraboloidal reflector to the distance r from the
symmetry axis and the focal length f :

z =
r2

4f

This equation was derived from the requirement that all parts of wave fronts traveling parallel to the z
axis must go the same distance to reach the focus at z = f (ERA Figure 3.7).

Alternatively, the equation for a paraboloidal reflector can be derived from the requirement that, for any
mirror, the angle of incidence θi equals the angle of reflection θr. The figure below shows the incoming
ray as a vertical dashed line, the reflected ray as the dashed line going to the focus, and the mirror
normal as the solid line between them.

Use θi = θr to confirm that a parabola with z = r2/4f will focus the incoming rays onto the point z = f ,
r = 0.

12. (4 points) Using the fact that a dipole antenna can transmit or receive only linearly polarized radiation

whose ~E vector is parallel to the dipole, show that equilibrium radiation cannot be linearly polarized.

13. (4 points) In 1903 the Doppel Dipol Antenne Company of Bern, Switzerland submitted a patent appli-
cation for their new “double dipole” antenna system that could collect all of the incident power from
both horizontal and linear polarizations simultaneously. Unlike the usual crossed dipoles with separate
two-terminal outputs, a black box in the Doppel Dipol system combines both polarizations using a secret
method to send double the power to a single two-terminal output when fed by an unpolarized signal.
The application was rejected by patent clerk A. Einstein. Why?

14. (6 points) ERA Figure 3.7 shows the parabolic cross section of a paraboloidal dish of the type used
in radio astronomy. The dish reflects plane waves from a distant source onto the focal point labeled
f , where a small feed antenna collects the radiation. (The term “feed” used by radio astronomers is
actually more appropriate for a transmitting antenna whose feed transmits power onto (“illuminates”)
the dish, which focuses the power into a narrow beam.)

A horizontal dipole antenna could be used as a feed, but it would be very inefficient because its power
pattern is nearly isotropic (in fact, it is isotropic in the plane normal to the dipole arms), so less than
half of the power transmitted by a dipole feed actually intercepts the dish. To improve the performance
of a dipole feed, radio astronomers put a flat mirror 1/4 wavelength behind the dipole to create a virtual
antenna 1/4 wavelength behind the flat mirror, as shown in the figure below.
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The real end-on horizontal dipole is indicated by the filled circle, and the mirror-image dipole by the
open circle below the reflector.

At large distances r � λ from the feed, the angle θ between the normal to the mirror and a ray is very
nearly the same for both the real and image dipoles. Rays from the image dipole must travel a distance
d = 2(λ/4) cos θ farther than those from the real dipole, causing a geometric phase delay of d(2π/λ)
radians. In addition, reflection changes the image antenna phase by 180◦ = π radians, so the total phase
difference between the real and image antennas is

φ =
2πλ cos θ

2λ
− π = π cos θ − π
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The total radiated electric field from this system is the vector sum of the electric fields of the real and
image antennas. If the real and image isotropic antennas both produce electric fields of amplitude E0 at
r � λ, show by trigonometry that the vector sum of their electric fields has amplitude

E = 2E0 sin

(
π

2
cos θ

)
for |θ| < π/2.

The corresponding power pattern is proportional to E2; it is shown as the dashed curve in the figure.
No power is wasted by going behind the reflector (|θ| > π/2), and the power in front of the reflector
is concentrated in a beam of width ≈ 2 radians, which is just about the right width to illuminate a
parabolic reflector like the one shown in ERA Figure 3.7.

This problem isn’t just a theoretical exercise; the actual low-frequency (ν . 1 GHz) feeds used at the
Green Bank Telescope (GBT) are crossed dipoles (to receive both linear polarizations) λ/4 in front of
flat reflecting disks. The photo below shows the GBT’s 290–395 MHz (λ ≈ 0.9 m) crossed-dipole feed.
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Problem Set 5

15. (10 points) The GBT has an unblocked circular aperture 100 m in diameter, and its aperture efficiency
is ηA ≈ 0.70 at low frequencies. The rms error in the GBT surface is σ ≈ 0.21 mm.

(a) (4 points) Estimate the aperture efficiency of the GBT at ν = 45 GHz.

(b) (4 points) The GBT is pointed at the unresolved and unpolarized calibration source 3C 295, whose
45 GHz flux density is Sν = 0.39 Jy. Neglecting atmospheric absorption, estimate the antenna
temperature added by 3C 295.

(c) (2 points) Estimate the half-power beamwidth θHPBW in arcsec of the GBT at 45 GHz.

16. (4 points) ERA Equation 3.133
λ = 4πσ

gives the wavelength λ at which the gain of a reflector antenna with rms surface error σ is highest.
Derive this equation.

17. (2 points) The traditional requirement on the rms pointing accuracy of a telescope is σ ≈ θHPBW/10. If
the telescope is mis-pointed by this amount, was is the fractional loss of gain?

18. (4 points) For large telescopes like the GBT, high-frequency performance is limited by pointing as well
as by surface accuracy.

(a) What is the required rms GBT pointing accuracy σ at ν = 45 GHz, expressed in radians?

(b) Compare this with the thermal expansion coefficient of steel, which is about 12 parts per million per
Centigrade degree. Estimate the maximum tolerable temperature differential across the telescope when
observing at 45 GHz.
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Problem Set 6

You would like to use the VLA at ν = 6 GHz to make a continuum image of a planetary nebula that is
a nearly uniform circular disk with angular diameter φ ≈ 10 arcsec and total flux density Sν ≈ 10 mJy.

19. (4 points) What is the brightness temperature Tb of the planetary nebula at ν = 6 GHz?

20. (12 points) The VLA exposure calculator at https://obs.vla.nrao.edu/ect/ can be used to calculate
the on-source observing time needed to reach a given sensitivity. Results from the exposure calculator
must be included in any VLA observing proposal to show that the proposed observations are feasible.

(a) (4 points) At https://obs.vla.nrao.edu/ect/ set the Representative Frequency to 6.0 GHz and
the Bandwidth to 4.0 GHz, the maximum available bandwidth at this frequency. You should get a
warning about “Severe RFI effects” noting that 15% of the band may be obliterated by RFI. The
screen should look like the figure below:

The VLA is centrally concentrated, so Natural weighting gives a poor beam shape. Select Robust
image weighting that assigns more weight to the longer baselines and notice that the Approximate
Beam Size shrinks to θ ≈ 12 arcsec. Use this result to estimate the effective diameter of the VLA
D Configuration with Robust weighting.

(b) (2 points) Change the Array Configuration from D to A. With Robust weighting, the beam size
should now be θ ≈ 0.326 arcsec. What is the effective size of the A configuration with Robust
weighting?
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(c) (4 points) To allow for frequency ranges lost to RFI, reduce the Bandwidth to 3.4 GHz. For the
default RMS Noise = 100µJy beam−1, what is the required Time on Source and how does it change
when going from the A to B to C configurations? Why?

(d) (2 points) Keeping the default RMS Noise = 100µJy beam−1, what the RMS Brightness (temp)
noise in the A, B, C, and D configurations? For which configurations is the RMS Brightness (temp)
noise less than 1/5 of the source brightness temperature?

21. (4 points) You would like to observe the planetary nebula with enough brightness sensitivity to get a
brightness signal-to-noise ratio SNR ≡ Tb/σT ≥ 50. How much Time on Source is needed in the D, C,
B, and A configurations? Why do these times vary so much (each successive time is ≈ 100× the time
required for the next smaller array)?
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Problem Set 7

22. (6 points) Consider an east-west two-element interferometer like the one shown in ERA Figure 3.41,
with a baseline length b = 1 km operating at ν = 6 GHz.

(a) (4 points) For a radio star on the celestial equator observed near transit, what is the “natural”
fringe frequency νf (Hz) caused by the Earth’s rotation?

(b) (2 points) What is the natural fringe frequency for a source at the north celestial pole?

23. (6 points) ERA Equation 3.203 gives the rms noise in units of point-source flux density for an interfer-
ometer image made with natural weighting, a single polarization, and a perfect analog correlator:

σS =
2kTs

Ae[N(N − 1)∆ν τ ]1/2
.

Here Ts is the system noise temperature, Ae is the effective collecting area of each antenna, N is the
number of antennas in the array, ∆ν is the bandwidth, and τ is the on-source integration time. Most
VLA observations use two polarizations (npol = 2), and the VLA correlator efficiency with 8-bit samplers
is only ηc ≈ 0.93. Thus a better estimate of the rms noise in a naturally weighted VLA image is

σS =
2kTs

ηcAe[npolN(N − 1)∆ν τ ]1/2
.

The VLA consists of N = 27 D = 25 m antennas, of which N = 25 are typically working, so the
VLA on-line exposure calculator (https://obs.vla.nrao.edu/ect) uses N = 25 as the default. At
S band (ν = 3 GHz), the VLA system noise temperature is about 40 K and the aperture efficiency is
ηa ≈ 0.62. The bandwidth of the receiver is 2 GHz, but RFI limits its maximum usable bandwidth
to ∆ν ≈ 1.5 GHz. Using these parameters, estimate how much on-source integration time τ would be
needed to reach an rms noise σS = 10µJy beam−1.

24. (8 points) The VLA exposure calculator at https://obs.vla.nrao.edu/ect helps astronomers propos-
ing for telescope time to estimate their required on-source observing times τ .

Use that calculator to verify your result from the previous problem. Set the Array Configuration to A to
make sure the Confusion Level is zero and use the defaults Elevation = medium and Average Weather
= Summer.

(a) (4 points) Convert the VLA result for Time on Source (UT) to seconds. What value did you get?
[Note: It should equal within a few percent the result you calculated for the previous problem. If
so, congratulations! You know more about calculating sensitivities than many NRAO users. If not,
check that all of the input fields for the VLA Exposure Calculator are correct and/or recheck your
calculation for the previous problem until you get agreement.]

(b) (4 points) Change the Array Configuration from A (maximum baseline ≈ 35 km) to B (maximum
baseline ≈ 11 km). The required Time on Source (UT) should not change because the rms confusion
in both configurations is much less than 10µJy beam−1. Next change the Array Configuration from
B to C (maximum baseline ≈ 3 km). Notice that the required Time on Source has increased slightly.
Although the VLA system noise hasn’t changed, the rms confusion has increased by an order-of-
magnitude to σc ≈ 2.44µJy beam−1 because the C-array beam area is about 10× larger than the
B-array beam area. The total image variance σ2 is the sum of the statistically independent noise
variance σ2

S and confusion variance σ2
c :

σ2 = σ2
S + σ2

c .

Calculate the value of σS needed to keep the image RMS σ = 10µJy when σc changes from zero to
2.44µJy beam−1 and verify that the integration time τ needed to reach the new value of σn agrees
with the Time on Source calculated by the VLA Exposure Calculator.
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[If you leave RMS Noise (units/beam) = 10µJy and change the Array Configuration to D (maximum
baseline ≈ 1 km), you will see that the RMS Noise (units/beam) jumps to 25.8µJy, and you should
get a warning message that the rms confusion is 25.8µJy beam−1. Confusion makes it impossible to
reach 10µJy beam−1 rms with the D configuration at S band, no matter how long the integration
time.]
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Problem Set 8

25. (20 points) Hot supergiant stars, such as the bright blue star Rigel A in the constellation Orion, can
shed mass at rates Ṁ ≈ 10−5M� yr−1 via ionized stellar winds. Consider a spherical, isothermal (at
temperature T ≈ 104 K), and fully ionized pure hydrogen wind starting at the photospheric radius
r0 ≈ 7 × 1012 cm and flowing radially outward with constant velocity v ≈ 300 km s−1 to a distance
� r0.

(a) (4 points) What is the electron density N0 at the base of the wind just above the photosphere of
Rigel?

(b) (4 points) What is the ionized wind emission measure EM in pc cm−6 along a radial line of sight
from the photosphere to a distant observer?

(c) (4 points) What is the ionized wind optical depth τν along this line of sight at ν = 10 GHz?

(d) (4 points) Because the ionized wind optical depth is τν � 1 at ν = 10 GHz, the photosphere
of Rigel A is buried and radio astronomers can see only the wind from the star. The opacity
coefficient is declining rapidly with r (you can easily show that κν ∝ r−4), so we will make the
simple approximation that the wind looks like a black body whose radius rbb is about equal to the
radius at which τ ≈ 1. Show that rbb is proportional to ν−0.7.

(e) (4 points) Show that the flux density of the wind is proportional to ν+0.6 at radio frequencies.
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Problem Set 9

26. (5 points) White dwarf stars are the cores remaining after low-mass stars have expelled most of their
outer layers during the red giant phase. They typically have masses M ∼ M� and radii r ∼ 104 km
comparable with the radius of the Earth (r⊕ ≈ 6.5×103 km). They are nearly black bodies with surface
temperatures high enough to ionize hydrogen and light up planetary nebulae. Show that even the hottest
white dwarfs cannot maintain surface temperatures T > 106 K.

27. (5 points) Measurements of the stronger (S & 1 Jy) extragalactic synchrotron sources have shown that
many have brightness temperatures as high as TB ∼ 1011 K at radio wavelengths. Approximately what
size radio telescope is needed to resolve such sources at any radio wavelength?

28. (5 points) Estimate the typical Lorentz factor γ of electrons emitting synchrotron radiation at ν =
1.4 GHz in the B ∼ 5 µG interstellar magnetic field of our Galaxy.

29. (5 points) The synchrotron lifetime τs of a radio source is defined as ratio of its total electron energy Ee

to the average synchrotron power 〈P 〉 emitted by the electrons in a magnetic field of strength B. Derive
an equation for the synchrotron lifetime of just those electrons with critical frequency νc = 1.4 GHz in
the B = 5µG interstellar magnetic field of our Galaxy, and estimate their synchrotron lifetime in years.
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Problem Set 10

30. (20 points) The far-infrared (FIR) luminosity of a star-forming galaxy is proportional to its recent
star-formation rate. The 1.4 GHz radio luminosities of most star-forming galaxies are observed to be
nearly proportional to their FIR luminosities. This is the famous FIR/radio correlation that makes
the radio luminosity a useful measure of the recent star-formation rate. Most of the 1.4 GHz radio
luminosity is synchrotron radiation from relativistic electrons that were accelerated in the supernova
remnants of massive, short-lived stars, so it makes sense that the number of relativistic electrons would
be proportional to the recent star-formation rate. Thus the tight FIR/radio correlation seems to require
that a fixed fraction of the energy in these relativistic electrons be turned into radio radiation.

However, every relativistic electron that emits synchrotron radio emission also loses energy by inverse-
Compton (IC) scattering, which converts electron energy into ultraviolet or X-ray emission. In the
“calorimeter” model for the FIR/radio correlation, relativistic electron energy is lost through two chan-
nels: synchrotron radiation and IC radiation. Thus excessive IC scattering might reduce the synchrotron
emission and cause the FIR/radio correlation to break down.

(a) (4 points) Consider a simple model in which the relativistic electrons in nearby star-forming galaxies
lose energy only by synchrotron radiation and by IC scattering off the T = 2.73 K blackbody cosmic
microwave background (CMB) radiation that fills the universe. What is the minimum magnetic
field strength Bmin in a nearby galaxy such that the IC losses do not exceed the synchrotron losses?

(b) (4 points) Show that the fraction f of the relativistic electron energy going into synchrotron ra-
diation is fairly constant when B > Bmin, which is consistent with the FIR/radio correlation, but
drops rapidly for B < Bmin, which is not consistent with the FIR/radio correlation.

(c) (4 points) Most nearby spiral galaxies have magnetic field strengths B ∼ 5 µG. Should they obey
the FIR/radio correlation? In the distant past at redshift z, the temperature of the CMB radiation
was (1 + z) · 2.73 K. Should we expect galaxies with B ∼ 5 µG to obey the FIR/radio correlation
at z = 2?

(d) (4 points) ULIRGs are Ultra-Luminous InfraRed Galaxies, most of which contain extremely lumi-
nous (bolometric luminosity L ∼ 1011.5L�) compact (radius R ∼ 100 pc) starbursts. The energy
density Urad of starlight in ULIRGs greatly exceeds the energy density of the CMB radiation. Show
that Urad ∼ 10−7 erg cm−3 in ULIRGs.

(e) (4 points) Despite their high radiation energy densities, ULIRGs still obey the FIR/radio correla-
tion. Estimate the minimum magnetic field strength Bmin such that Ubmin = Urad in ULIRGs.
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Problem Set 11

31. (6 points) The frequency-dependent delays shown in ERA Figure 6.5 are due to dispersion by the ionized
interstellar medium in our Galaxy, whose electron density is ne ∼ 0.03 cm−3. The frequency range plotted
extends from νlo = 300 MHz to νhi = 395 MHz.

(a) (3 points) If that pulsar has a spin period P = 1.2 s, what is the Dispersion Measure (DM) towards
the pulsar?

(b) (1 point) What is the rough distance to the pulsar?

(c) (2 points) If we are conducting a pulsar survey using the same receiver that provided the data for
Figure 6.5, approximately what would the stepsize in DM be if we didn’t want an error in DM to
smear our signal more than 100µs in order to detect millisecond pulsars (MSPs)? Roughly how
many independent DMs would we have to search if we wanted to search to a maximum DM of
100 pc cm−3?

32. (6 points) When it was realized that pulsars appear to be slowing down with time (i.e., Ṗ > 0), one of
the explanations was a second-order effect that would result if the pulsars had a large transverse velocity
component V in the plane of the sky (Shklovskii, I. S. 1970, Soviet Astron., AJ, 13, 562).

(a) (4 points) If all of the pulsar’s measured spin-down is due to the “Shklovskii effect” and the pulsar
is at a distance d, show that

ṖS =
V 2

dc
P .

(b) (2 points) Using the PṖ diagram (ERA Figure 6.3), and assuming a typical V = 200 km s−1 and
typical distances between 0.1 kpc and 10 kpc, does the Shklovskii effect contribute significantly
(ṖS > 0.01Ṗ ), for instance, to the observed Ṗ of any pulsars? If so, which ones?

33. (11 points) You have recently found an interesting X-ray point source with Chandra which you suspect is
a pulsar. You point the GBT at it and discover an isolated pulsar with a spin period of 0.0840035907(1)
seconds based on your discovery observation. Since you already have a precise position from the X-ray
observation, you immediately request timing observations over the next couple weeks with the hope of
measuring the spin-down rate and the associated physical parameters of the pulsar based on it. The first
two TOAs below are from your discovery observation. Here are the arrival times in MJD from the GBT
after correcting them to the Solar System barycenter (i.e. to remove the effect of the Earth’s motion).
The errors on each are about 0.3 ms.

MJD
54888.5315263508382
54888.7833601709499
54889.6818806806114
54891.8215009488777
54895.0038998945965
54900.7409878392282

You can download these from https://www.cv.nrao.edu/~sransom/ps10_TOAs.txt

(a) (2 points) Given the total time baseline between first TOA and last, as well as the approximate
TOA uncertainties, estimate the precision with which you should be able to measure the spin
frequency ν and the spin frequency derivative ν̇. For this example, because of the small number of
TOAs and the covariances between ν and ν̇, you will not be able to do quite that well.

(b) (6 points) Determine ν and ν̇ (referenced to the time of the first TOA) using a timing analysis of
your choosing that properly accounts for all the rotations of the pulsar. Counting the first TOA as
rotation zero, record the rotation numbers of the pulsar for each TOA. Hint: You should only
add a single TOA at a time (i.e. iterate or re-do the “solution” each time, using the
previous answers as your new starting points)) while you are determining your solution
or you may mis-count the pulse numbers! Alternatively, you could try a brute force solution
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since you know that there are an integer number of rotations between each pulse. Make sure that
you include your code (or at least a good description of what you did) for this part. Remember
that since the TOA errors are about 0.3 ms each, the resulting model should predict each of their
phases to approximately that precision! If that is not the case when you have a final answer, then
you do not have a good timing solution!

(c) (3 points) Estimate the Ė, magnetic field strength, and characteristic age τ of the pulsar. What
kind of a pulsar is this?
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Problem Set 12

34. (8 points) The recent paper “HII region ionization of the interstellar medium: a case study of NGC
7538” by Metteo Luisi, L. D. Anderson, Dana S. Balser, T. M. Bania, & [UVa astronomy grad student]
Trey V. Wenger 2016, ApJ, 824, 125 includes a GBT recombination-line spectrum (Figure 1) at position
W2 in the HII region NGC 7538. It is the aligned average of the seven transitions (87α through 93α)
observed simultaneously at seven frequencies from 9.812 to 8.046 GHz. The observed radial velocity of
the hydrogen line center is vr = −60 km s−1. The 12C carbon line and the 4He helium line are at the
same radial velocity, but they appear at more negative velocities on the plot because these lines have
higher rest frequencies. The fitted Gaussians have peak antenna temperatures TA = 181.2 mK (H) and
21.7 mK (He), and full widths between half-maximum points (FWHMs) ∆vr = 24.6 km s−1 (H) and
18.6 km s−1 (He). The lines are optically thin.

Figure 1: The recombination-line spectrum at position W2 in the HII region NGC 7538 with Gaussian fits
(red) to the H, He, and C lines. The velocity scale indicates the radial velocity relative the the rest frequency
for the H line.

(a) (4 points) Calculate the velocity at which the dotted line indicating the center of the He line should
be plotted in Figure 1. [Tip: Use the approximations MH = 1.67 × 10−24 g and MHe = 4MH for
simplicity; your result will still be quite accurate.]

(b) (4 points) About how many He+ ions are there per H+ ion?

35. (12 points) Rotating polarized molecules emit radio-frequency spectral lines that can penetrate dusty
molecular clouds and reveal physical conditions such as density and temperature in the obscured regions
where most new stars are born in our own Galaxy, in nearby galaxies, and even in the luminous star-
forming galaxies at high redshifts that account for the bulk of star formation in the universe (Carilli
& Walter 2013, ARA&A, 51, 105). The 12C16O isotope of carbon monoxide is the most abundant and
universal radio tracer of diffuse interstellar molecular gas, and HCN (hydrogen cyanide) is especially
useful for pinpointing the densest gas (n > 105 cm−3) that is about to form stars (Gao & Solomon 2004,
ApJ, 606, 271).

The critical number density n∗ (cm−3) of molecules (ERA Equation 7.135) is the minimum density
needed for collisions to bring the molecular excitation temperature close to the gas kinetic temperature,
so strong lines are emitted only by regions with densities n ≈ n(H2) & n∗. The critical density depends
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both on the emitting molecular species (e.g., CO, HCN, . . . ) and on the upper rotational quantum
number J , so different lines from different species respond to regions with different densities.

Similarly, there is a minimum gas temperature Tmin ∼ Erot/k below which most collisions are insuffi-
ciently energetic to excite the upper-level rotational quantum number J of a particular rotational line
(ERA Section 7.7.2).

Panel “a” shows how increasing log(n) increases higher-J CO emission from gas with fixed temperature
T = 40 K. Panel “b” shows how increasing the gas temperature increases higher-J CO emission from
gas with fixed density log(n) = 3.4.

(a) (4 points) Show that the critical density n∗ at which the collisional excitation rate balances the
radiative deexcitation rate for the J → J − 1 rotational transition is

n∗ ∝ 3J4

2J + 1

times the critical density of the J = 1 → 0 transition. Thus higher densities are needed to excite
lines with higher J , as shown in Panel “a.” Note that this result applies to all species of linear
rotating molecules, not just CO.

(b) (4 points) ERA Equation 7.133 gives the spontaneous emission rate for the J → J − 1 rotational
transition as (

AJ→J−1
s−1

)
≈ 1.165× 10−11

∣∣∣∣ µD
∣∣∣∣2( J

2J + 1

)(
ν

GHz

)3

,

where µ/D is the electric dipole moment in units of Debye = 10−18 statcoul cm. The dipole moment
of the common CO molecule is only µ ≈ 0.11 D, but some molecules have much higher dipole
moments. In particular, the HCN (hydrogen cyanide) molecule has µ ≈ 2.7 D. The measured rest
frequency of the HCN J = 1 → 0 line is ν ≈ 88.6 GHz. Compare the critical density of the HCN
J = 1→ 0 transition with that of the CO J = 1→ 0 transition, n∗ ≈ 1.4× 103 cm−3.

(c) (4 points) Fill in the table below with CO and HCN critical densities for lines with upper rotational
quantum numbers J = 1, 2, 3, and 4 by scaling from the value n∗ = 1.4×103 cm−3 for the J = 1→ 0
CO line.
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J → J − 1 n∗(CO) n∗(HCN)
(cm−3) (cm−3)

J = 1→ 0 1.4× 103 ?
J = 2→ 1 ? ?
J = 3→ 2 ? ?
J = 4→ 3 ? ?
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