
Lecture 1:

1.1 An Introduction to Radio Astronomy

1.1.1 What is Radio Astronomy?

Radio astronomy is the study of natural radio emission from celestial sources.

The radio frequency range is defined by the atmosphere and by quantum noise

10 MHz . ν . 1 THz

1.1.2 Atmospheric Windows

The visible light window covers 3000 K . T . 10, 000 K blackbody stars, gas ionized by

stars, galaxies of stars, planets reflecting starlight

Blackbody stars are weak radio sources

The radio window is bounded by ionospheric refraction,

absorption by rotating and vibrating polar molecules

Radio opacity from dry air, O2, hydrosols, water vapor line and continuum

Radio refraction by water vapor is large

Fig. 1.— The atmospheric zenith opacity τz at Green Bank during a typical summer night.

The oxygen and dry-air opacities are nearly constant, while the water vapor and hydrosol

contributions vary significantly with weather.



1.1.3 Astronomy in the Radio Window

The radio window is broad (5 decades of frequency),

includes most astronomical objects, emission mechanisms, and propagation phenomena,

and requires a wide range of radio telescopes and observing techniques

The radio window was opened before space astronomy, leading to many major discoveries:

violent phenomena, often powered by gravity, cosmologically distant, very cold

Radio emission is usually energetically insignificant

Fig. 2.— The electromagnetic spectrum of the universe at radio, far-infrared (FIR),

optical/near-infrared (OIR), and X-ray (X) and gamma-ray (γ) frequencies.

1.1.4 Long Wavelengths and Low Frequencies

Long wavelengths are unbiased by dust, allow coherent emission by groups of charged par-

ticles

Low photon energies E = hν � kT

Thermal emission Bν = 2kTν2/c2 visible even from cold objects

Stimulated emission, astrophysical masers exist

Radio sources can remember the past

Plasma effects (scattering, dispersion, Faraday rotation, . . . ) ∝ ν−2.

1.1.5 Radio Telescopes and Aperture-Synthesis Interferometers

Diffraction-limited resolution θ ≈ λ/D

Aperture-synthesis interferometers

Sensitive coherent interferometers limited to radio by quantum noise T ≈ hν/k

Interferometers: Large D ∼ 104 km, small θ,

Accurate astrometry (clocks are better than rulers),

High dynamic range and image fidelity with self-calibration
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1.2 Discovery of Cosmic Radio Noise

Astronomers knew that blackbody stars would be undetectably weak radio sources

Bν(ν, T ) =
2hν3

c2

1

exp

(
hν

kT

)
− 1

≈ 2kTν2

c2
,

hν

kT
∼ 10−5 � 1 (1)

Note subscript ν and argument ν, define constants and variables

CGS and SI (MKS) units, “astronomical” units, constants in Appendix F.

Read Appendix F.

Dimensional analysis, dictionary of symbols in Appendix G.

Jansky (1932) accidentally discovered continuum emission our Galaxy

Fig. 3.— Karl Jansky and the antenna that discovered cosmic radio static.

Grote Reber (1938) built a 10 m parabolic radio telescope, mapped the Galaxy at 160 MHz,

and showed it has a nonthermal spectrum.

1.3 A Tour of the Radio Universe

Parallel universes of optical and radio astronomy

Radio-faint optical objects, optically faint radio sources

Familiar optical objects may look different at radio wavelengths



Radio sky is black in daytime, clouds emit, planets emit

Galactic continuum from massive short-lived stars and SNRs

Powerful radio galaxy Cyg A z ≈ 0.057, d ≈ 240 Mpc, radio L ∼ 1045 erg s−1,

easily visible anywhere in the universe, extent D ∼ 100 kpc,

3C 273 quasar z ≈ 0.16.

Cosmic Microwave Background (CMB) radiation

See also: https://www.cv.nrao.edu/course/astr534/Tour.html

Fig. 4.— Grote Reber’s backyard radio telescope in Wheaton, IL. The parabolic reflector is

about 10 m in diameter.
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2.1 Brightness and Flux Density

Ray-optics approximation in vacuum

spectral brightness (specific intensity)

Iν ≡
dP

(cos θ dσ) dν dΩ
(W m−2 Hz−1 sr−1) (2)

|Iν dν| = |Iλ dλ| (3)

Specific intensity is conserved along a ray in empty space

Flux density is specific intensity integrated over source solid angle

Sν ≡
∫

source

Iν(θ, φ) cos θ dΩ ≈
∫

source

Iν(θ, φ) dΩ (4)

Inverse square law, spectral luminosity

lLν = 4πd2Sν (5)

2.2 Radiative Transfer

(linear) Absorption coefficient:

κ ≡ dP

ds

dIν
Iν

= −κ ds (6)

Iν(sout)

Iν(sin)
= exp

[
−
∫ sout

sin

κ(s′) ds′
]

(7)

τ ≡ −
∫ sin

sout

κ(s′) ds′ so
Iν(sout)

Iν(sin)
= exp(−τ) (8)



Emission coefficient

jν ≡
dIν
ds

(9)

Radiative transfer equation
d Iν
ds

= −κIν + jν (10)

Fig. 5.— Kirchhoff’s thought experiment invokes two cavities in thermodynamic equilibrium

connected through a filter that passes radiation in the narrow frequency range ν to ν + dν.

The cavities may be made of different materials and contain different emitting/absorbing

particles.

Kirchhoff’s law in LTE at temperature T :

jν(T )

κ(T )
= Bν(T ) (11)

Rayleigh-Jeans brightness temperature is defined by

Tb ≡
Iνc

2

2kν2
(12)

and this definition applies for any Iν , ν.

Kirchhoff’s law for opaque bodies in LTE at temperature T :

e(ν) = a(ν) = 1− r(ν) (13)

so

Tb = a(ν)T = [1− r(ν)]T (14)
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2.3 Polarization

Fig. 6.— The electric field vector of any monochromatic wave traveling in the ẑ-direction

pointing up out of the page traces an ellipse that can be written in the form ~E =

[x̂Ex exp(iφx) + ŷEy exp(iφy)] exp[i(~k · ẑ − ωt)]. The ellipse shown has δ = +π/4 and

Ex/Ey = 1.4. If δ ≡ φx − φy = 0, the ellipse becomes a line, while a δ = ±π/2, Ex = Ey
would make it a circle. When δ > 0, the tip of the vector rotates clockwise as viewed from

the source below the page and counterclockwise as seen by an observer above the page, as

shown by the time samples at ωt = 0, π/4, π/2, . . . .

The polarization of an astronomical source can very rapidly with time. Its time-averaged

polarization can be described by the Stokes parameters:

I = 〈E2
x + E2

y〉/R0, (15)

Q = 〈E2
x − E2

y〉/R0, (16)

U = 〈2ExEy cos δ〉/R0, (17)

V = 〈2ExEy sin δ〉/R0, (18)

where the brackets indicate time averages, R0 is the radiation resistance of free space, and

I is the total flux density, regardless of polarization. The polarized flux density is

Ip = (Q2 + U2 + V 2)1/2 (19)

and the degree of polarization is defined as

p ≡ Ip

I
. (20)



2.4 Blackbody Radiation

Blackbody radiation = cavity radiation = equilibrium radiation

The Rayleigh-Jeans derivation counts all standing-wave modes and assigns average energy

〈E〉 = kT to each, yielding the Rayleigh-Jeans approximation for the spectral brightness of

blackbody radiation

Bν =
2kTν2

c2
=

2kT

λ2
(hν � kT ) . (21)

The Planck derivation differs in quantizing the radiation energy per mode to integer multiples

of E = hν = photon energy. This yields

Bν =
2kTν2

c2

 hν

kT

exp
( hν
kT

)
− 1

 , (22)

where the first factor is the Rayleigh-Jeans approximation and the quantity in square brackets

is the quantum correction factor. Planck’s equation is usually written in the simpler form

Bν(ν, T ) =
2hν3

c2

1

exp
( hν
kT

)
− 1

. (23)

Integrating Planck’s law over all frequencies gives the Stefan–Boltzmann law for the total

intensity

B(T ) ≡
∫ ∞

0

Bν(T )dν =
σT 4

π
where σ ≡ 2π5k4

15c2h3
≈ 5.67× 10−5 erg

cm2 s K4 (sr)
. (24)

The total radiation energy density

u ≡
∫ ∞

0

uνdν =
4πI

c
=

4σT 4

c
(25)

for blackbody radiation. The spectral flux density emitted from the surface of an isotropic

source is

Fν =

∫
Iν cos θ dΩ = πIν . (26)

The total flux, or power per unit area, emitted by a blackbody at temperature T is

F (T ) = πB(T ) = σT 4 . (27)
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2.5 Noise Generated by a Warm Resistor

Fig. 7.— Two resistors connected by a lossless transmission line of length a� λ, the longest

wavelength of interest. In equilibrium, the transmission line can support only those standing

waves having zero voltages at the ends; other modes are suppressed by the lossy resistors.

A warm resistor is the 1D analog of a 3D blackbody. In equilibrium at temperature T it

generates noise with spectral power (Nyquist formula)

Pν = kT (hν � kT ) . (28)

The “noise temperature” is defined by

TN =
Pν
k
. (29)

At any frequency, the exact form of the Nyquist formula is

Pν = kT

 hν

kT

exp
( hν
kT

)
− 1

 =
hν

exp
( hν
kT

)
− 1

. (30)

2.6 Cosmic Microwave Background (CMB) Radiation

In the homogeneous expanding universe, the Hubble parameter is defined by

H ≡ lim
d→0

(
v

d

)
. (31)

and its present value is H0 ≈ 67.8 ± 0.9 km s−1 Mpc−1. The Hubble time is defined by

tH ≡ H−1
0 ≈ 4.55× 1017 s / 107.5 s yr−1 ≈ 1.44× 1010 yr and the Hubble distance is defined

by dH = c/H0 ≈ 1.36× 1028 cm ≈ 4.4× 109 pc ≈ 1.4× 1010 light years.

The critical density is

ρc =
3H2

0

8πG
≈ 8.6× 10−30 g cm−3 (32)

for H0 = 67.8 km s−1 Mpc−1.



The universe is filled with blackbody radiation at temperature T0 ≈ 2.73 K today. In the

past the CMB temperature was T = T0(1 + z), where the redshift z is defined by

z ≡ λo − λe

λe

=
λo

λe

− 1 =
νe

νo

− 1 . (33)

The redshift z and universal expansion factor a are related by (1 + z) = a−1.

The CMB comes from z ≈ 1091, when the age of the universe was t∗ ≈ 379, 000 yr.

See “ΛCDM Cosmology for Astronomers,” Condon & Matthews 2018, PASP, 130:073001.

Big-bang nucleosynthesis.

2.7 Radiation from an Accelerated Charge

Fig. 8.— The electric field lines from an accelerated electron. The dotted circle shows the

initial position of the electron, and the dotted lines are the radial lines of force emanating

from that position. At time t after a small acceleration ∆v/∆t, the electron position has

moved by ∆v t and its lines of force have shifted transversely by ∆v t sin θ.

Coulomb’s law (Gaussian CGS form):

Er =
q

r2
(34)

E⊥
Er

=
∆v t sin θ

c∆t
(35)

E⊥ =
qv̇ sin θ

rc2
(36)

~S =
c

4π
~E × ~B |~S| = c

4π
E2 =

(
q2v̇2

4πc3

)
sin2 θ

r2
(37)

Larmor’s equation: (classical, nonrelativistic)

P =

∫
sphere

|~S| dA =
2

3

q2v̇2

c3
(38)
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Appendix A. Fourier Transforms

The Fourier transform of f(x) is defined by

F (s) ≡
∫ ∞
−∞

f(x) e−2πisx dx (39)

and

f(x) ≡
∫ ∞
−∞

F (s) e2πisx ds , (40)

where the complex exponential

eiφ = cosφ+ i sinφ (41)

is a convenient way of dealing with sines and cosines (see ERA Appendix B3).

The symbol ⇔ means “is the Fourier transform of”; e.g.,

F (s)⇔ f(x) . (42)

The discrete Fourier transform is defined by

Xk ≡
N−1∑
j=0

xj e
−2πijk/N (43)

and

xj ≡
1

N

N−1∑
k=0

Xk e
2πijk/N . (44)

The sampling theorem says that any continuous function with a limited bandwidth ∆ν can

be reconstructed exactly from uniformly spaced samples separated in time by

∆t ≤ (2∆ν)−1 . (45)

The power spectrum of a continuous signal f(x) is defined by F (s)F (s) = |F (s)|2. Rayleigh’s

theorem says the signal energies are the same in the time and frequency domains:∫ ∞
−∞
|f(x)|2 dx =

∫ ∞
−∞
|F (s)|2 ds . (46)

Addition theorem:

f(x) + g(x)⇔ F (s) +G(s). (47)

Scaling theorem (a is any constant):

af(x)⇔ aF (s) (48)



Shift theorem:

f(x− a)⇔ e−2πiasF (s) (49)

Similarity theorem:

f(ax)⇔ F (s/a)

|a|
(50)

Modulation theorem:

f(x) cos(2πνx)⇔ 1

2
F (s− ν) +

1

2
F (s+ ν) (51)

Derivative theorem:
df

dx
⇔ i2πsF (s) (52)

The convolution h(x) of the functions f and g is a linear functional defined by

h(x) = f ∗ g ≡
∫ ∞
−∞

f(u)g(x− u) du . (53)

Convolution theorem:

f ∗ g ⇔ F ·G (54)

Cross-correlation is represented by the pentagram symbol ? and defined by

f ? g ≡
∫ ∞
−∞

f(u)g(u− x) du . (55)

Cross-correlation theorem:

f ? g ⇔ F ·G (56)

Autocorrelation is cross-correlation of a function with itself: f ? f . The autocorrelation

theorem (a.k.a. Wiener–Khinchin theorem) states

f ? f ⇔ F · F = |F | , (57)

so the Fourier transform of the autocorrelation function yields the signal power spectrum.
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3.1 Antenna Fundamentals

An antenna is a passive device that converts electromagnetic radiation in space into electrical

currents in conductors or vice versa, depending on whether it is being used for receiving

or for transmitting, respectively. The simplest antenna is the short dipole of total length

l � λ driven by a current source I = I0e
−iωt. (See Appendix B.3 for a review of complex

exponentials.) Electric current in a wire is defined as the charge flow rate

I ≡ dq

dt
=
dq

dz

dz

dt
=
dq

dz
v . (58)

Using ERA Equation 2.136 in the derivation of Larmor’s equation,

E⊥ =
qv̇ sin θ

rc2
=

∫ +l/2

z=−l/2

dq

dz
dz
v̇ sin θ

rc2
=
−iω sin θ

rc2

∫ +l/2

−l/2
I dz . (59)

For a linear current distribution tapering to I = 0 at the ends of the dipole,

I(z) ≈ I0e
−iωt
[
1− |z|

(l/2)

]
so

∫ +l/2

−l/2
I dz ≈ I0l

2
e−iωt (60)

and

E⊥ ≈
−iω sin θ

rc2

I0l

2
e−iωt =

−iπ sin θ

c

I0l

λ

e−iωt

r
. (61)

The time-averaged [〈cos2(ωt)〉 = 1/2] Poynting flux radiated

〈S〉 =
c

4π
〈E2
⊥〉〈S〉 =

c

4π

(
1

2

)(
I0l

λ

π

c

)2
sin2 θ

r2
(62)

has a doughnut-shaped sin2 θ pattern, and the total time-averaged power radiated is

〈P 〉 =
π2

3c

(
I0l

λ

)2

. (63)



The power gain G(θ, φ) of a transmitting antenna is defined as the power transmitted per

unit solid angle in direction (θ, φ) relative to an isotropic antenna, which has the same gain

in all directions. For a lossless antenna, energy conservation requires∫
sphere

GdΩ = 4π so 〈G〉 = 1 . (64)

The effective area Ae of a receiving antenna is defined by

Ae ≡
2Pν
Sν

, (65)

where Pν is the antenna response to an unpolarized point source of flux density Sν .

For any lossless antenna,

Pν =
1

2

∫
4π

Ae(θ, φ)Bν dΩ, 〈Ae〉 ≡
∫

4π
Ae dΩ∫

4π
dΩ

=
1

4π

∫
4π

Ae dΩ , so 〈Ae〉 =
λ2

4π
. (66)

Reciprocity: An antenna can be treated either as a receiving device, gathering the incoming

radiation field and conducting electrical signals to the output terminals, or as a transmitting

system, launching electromagnetic waves outward. These two cases are equivalent because

of time reversibility: the solutions of Maxwell’s equations are valid when time is reversed.

Thus G(θ, φ) ∝ Ae(θ, φ). Using 〈Ae〉 = λ2/(4π) and 〈G〉 = 1,

Ae(θ, φ) =
λ2G(θ, φ)

4π
. (67)

Antenna temperature is defined by

TA ≡
Pν
k
. (68)

The antenna temperature produced by an unpolarized point source of flux density Sν is

TA =
Pν
k

=
AeSν

2k
. (69)

The main beam (MB) solid angle is defined by

ΩMB ≡
1

G0

∫
MB

G(θ, φ) dΩ . (70)
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3.2 Reflector Antennas

Reflector antennas have effective areas approaching their geometric areas, are electrically

simple, and cover a wide frequency range.

Equation of a paraboloid : z =
r2

4f
(71)

For best performance, targets must not be closer than the far-field distance

Rff ≈
2D2

λ
. (72)

The aperture of a reflector antenna is the opening through which all rays pass.

The beam pattern of an antenna system is its power gain as a function of direction.

The electric field pattern is the square root of the beam power pattern.



Huygen’s principle: The aperture can be treated as a collection of small elements acting

individually. The electric field contributed by the element from x to x+ dx is

df ∝ g(x)
exp(−i2πr(x)/λ)

r(x)
dx . (73)

The Fraunhofer approximation in the far field is

r ≈ R + x sin θ = R + xl where l ≡ sin θ . (74)

df ∝ g(x) exp(−i2πxl/λ)dx . (75)

Define u ≡ x/λ and integrate to get the aperture field pattern

f(l) =

∫
aperture

g(u)e−i2πludu , (76)

which is the Fourier transform of the field illumination g(u).

Example: Uniform illumination of a one-dimensional aperture of width D:

g(u) = constant, −D
2λ

< u < +
D

2λ
(77)

f(l) =

∫ +1/2

−1/2

e−i2πludu =
e−i2πlu

−i2πl

∣∣∣∣+1/2

−1/2

=
e−iπl − eiπl

−i2πl
=

sin(πl)

(πl)
≡ sinc(l) (78)

In the limit θ � 1 radian, l = sin θ ≈ θ and the field and power patterns are

f(θ) =
D

λ
sinc

(
θD

λ

)
and P (θ) = f 2(θ) =

(
D

λ

)2

sinc2

(
θD

λ

)
. (79)

Resolving power = diffraction-limited half-power beamwidth: θHPBW ≈ 0.89λ/D.

Example: Cosine-tapered illumination is more practical, yields lower sidelobes, slightly lower

aperture efficiency, and slightly larger beamwidth θHPBW ≈ 1.2λ/D.
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3.3 Two-Dimensional Aperture Antennas

The electric field pattern of a two-dimensional aperture is the two-dimensional Fourier trans-

form of the aperture field illumination:

f(l,m) ∝
∫ ∞
−∞

∫ ∞
−∞

g(u, v)e−i2π(lu+mv)du dv, (80)

where m is the y-axis analog of l on the x-axis and v ≡ y/λ.

The field and power patterns of a uniformly illuminated rectangular aperture are:

f(l,m) ∝ sinc

(
lDx

λ

)
sinc

(
mDy

λ

)
and Pn(l,m) = sinc2

(
lDx

λ

)
sinc2

(
mDy

λ

)
. (81)

The absolute power gain G in any direction can be calculated from the relative power pattern

by invoking energy conservation:∫
GdΩ = 4π = G0

∫ +1

−1

∫ +1

−1

Pn(l,m)dl dm ; (82)

it is

G =

(
4πDxDy

λ2

)
sinc2

(
lDx

λ

)
sinc2

(
mDy

λ

)
≈
(

4πDxDy

λ2

)
sinc2

(
θxDx

λ

)
sinc2

(
θyDy

λ

)
(83)

Aperture efficiency ηA is defined as the ratio of the on-axis effective area A0 = λ2G0/(4π) to

the geometric area:

ηA ≡
A0

Ageom

. (84)

It is ηA = 1 for a uniformly illuminated aperture and ηA < 1 otherwise.

Gaussian beams: Most radio telescopes have nearly Gaussian beams

ΩA =

∫ ∞
θ=0

∫ 2π

φ=0

exp

[
−4 ln 2

(
θ

θHPBW

)2]
θ dφ dθ , (85)

where the half power beam width (HPBW) = full width between half-maximum (FWHM)

points. The Gaussian beam solid angle is

ΩA =

∫ ∞
θ=0

∫ 2π

φ=0

exp

[
−4 ln 2

(
θ

θHPBW

)2]
θ dφ dθ =

(
π

4 ln 2

)
θ2

HPBW ≈ 1.133 θ2
HPBW . (86)

Reflector surface accuracy: Ruze equation for reflector surface efficiency:

ηs = exp

[
−
(

4πσ

λ

)2]
(87)



Good performance requires σ . λmin/16. Similarly, the rms pointing errors in each coordi-

nate should be no larger than σ1 ∼ θHPBW/10. Differential solar heating and wind gusts are

major contributors to pointing errors.

3.4 Waveguides

Waveguides are low-loss shielded “pipes” used to transport electromagnetic waves between

antennas and receivers or between sections of a receiver. At the conducting walls, the parallel

component of any electric field inside the waveguide must be zero, so waves travel down the

waveguide with group velocity

vg = c sinα = c(1− cos2 α)1/2 = c

[
1−

(
νc

ν

)2]1/2

, (88)

and the cutoff wavelength (cosα = 1 so vg = 0) is λc = 2a. To suppress higher-order

modes, waveguides are rarely used at frequencies ν > 2νc. Each feed and receiver on a radio

telescope covers only one waveguide band, so several feeds and receivers are needed to span

the much wider useful frequency range of the telescope itself.
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3.5 Radio Telescopes

Dipole arrays are practical only at wavelengths λ & 1 m

Waveguide horns have unblocked apertures and pick up very little ground radiation, so they

can measure absolute sky temperatures (e.g., the Bell Labs horn that detected the 2.73 K

CMB at ν ≈ 4 GHz). They also have nearly uniform aperture illumination, so their absolute

collecting areas can be calculated accurately and they can be used to make absolute flux-

density measurements of strong sources.

Large steerable parabolic dishes can have equatorial mounts (e.g., the 140-foot telescope

in Green Bank) but most have mechanically simpler alt-az mounts that turn on horizontal

azimuth tracks and tip in “altitude” (elevation angle above the horizon).

Small prime-focus feeds are normally used at wavelengths λ & 0.3 m (ν . 1 GHz). Magni-

fying subreflectors requiring larger feeds are favored at shorter wavelengths because:

1. They multiply the effective f/D ratio; values of f/D ∼ 2 are typical. This greatly

increases the size of the focal ellipsoid. Multiple feeds can be located within the focal

ellipsoid to produce multiple simultaneous beams for faster imaging.

2. The subreflector is many wavelengths in diameter so the illumination taper can be

tailored to optimize the tradeoff between high aperture efficiency and low sidelobes.

3. Receivers can be located near the vertex, where they are easier to access.

4. Feed spillover radiation is directed toward the cold sky instead of the warm ground.

5. The subreflector can rapidly nutate (switch the beam between two adjacent positions

on the sky) to differentiate (cancel out) slow receiver and atmospheric noise drifts.

6. The subreflector can be tilted to select any of several feeds at the secondary focus.



Homology telescopes have backup structures that deform to maintain a parabolic surface

while tilting; only the focus shifts, and the feed/subreflector can track the shifting focus.

The 305 m (1000 foot) Arecibo telescope has a fixed spherical reflector and can be steered up

to 20◦ from the zenith by moving the feeds. Spherical aberrations are corrected by waveguide

line feeds or shaped subreflectors.

The 100 m Green Bank Telescope (GBT) is an offset section of a 208 m “parent” paraboloid

so its aperture is unblocked. The offset feed arm can be large because it is not blocking

the aperture. It is strong enough to hold the subreflector plus a large receiver cabin at the

Gregorian secondary focus. The secondary focus is not far below the prime focus, so the

subreflector subtends a large solid angle as seen by the Gregorian feeds, which are not large.

The GBT is homologous and also has an active surface with ≈ 2000 panels that are adjusted

in real time to compensate for surface errors. In good conditions, the GBT surface error is

only σ ≈ 0.21 mm and the GBT is efficient up to ν ∼ 100 GHz.
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3.6 Radiometers

A radiometer is a receiver that measures the average power of noise coming from a radio

telescope in some frequency range ∆ν. A square-law detector in the radiometer squares the

noise voltage to produce an output noise voltage proportional to the input noise power.

The noise power of most astronomical sources is stationary (steady) on timescales τ � ν−1.

The sampling theorem says that any function with bandwidth ∆ν and duration τ can be

represented by 2∆ν τ independent samples spaced in time by (2∆ν)−1. By averaging a large

number N = (2∆ν τ) samples, an ideal radiometer can determine the average noise power

with a fractional rms error as small as (N/2)−1/2 = (∆ν τ)−1/2 � 1.

The noise temperature of any noiselike source is defined by

TN ≡
Pν
k
. (89)

The system noise temperature is the sum of all noise contributions

Ts = Tcmb + Trsb + ∆Tsource + [1− exp(−τA)]Tatm + Tspill + Tr + · · · , (90)

where Tcmb ≈ 2.73 K is the cosmic microwave background, Trb is the average sky brightness

produced by radio sources, ∆Tsource is from the source being observed, [1 − exp(−τA)]Tatm

is atmospheric emission in the telescope beam, Tspill is spillover pickup, Tr is the radiometer

noise temperature, and . . . represents other noise sources such as ohmic losses.

Ideal total-power radiometer equation for rms output noise fluctuations:

σT ≈
Ts√
∆ν τ

(91)

Fractional gain fluctuations ∆G/G in practical total-power radiometers increase the noise

to

σT ≈ Ts

[
1

∆ν τ
+

(
∆G

G

)2]1/2

. (92)



Dicke radiometer:

σT =
2Ts√
∆ν τ

(93)

Superheterodyne receivers:

Confusion: sky brightness fluctuations from numerous faint sources in every telescope beam.
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3.7 Interferometers I

A single dish of diameter D has diffraction-limited resolution θ ≈ λ/D, collecting area

. πD2/4, a field of view containing at most a few beams, and must have mechanical pointing

errors σ . θ/10. Fully steerable dishes larger than D ∼ 100 m are impractical.

A interferometric array of N relatively small dishes has resolution θ ≈ λ/b, where b� D is

the maximum baseline separating the dishes, collecting area . NπD2/4, a field of view cov-

ering θ2 ∼ (λ/D)2 containing ∼ (b/D)2 � 1 resolution elements, and can measure positions

with uniquely high accuracy σ � 1′′ by using clocks instead of rulers. Interferometers are

less vulnerable to fluctuations in atmospheric emission and receiver gain, radio frequency

interference, and pointing shifts caused by atmospheric refraction. Interferometers do not

respond to smooth emission extended over angles � λ/D, and very large (b � D) inter-

ferometers have poor surface-brightness sensitivity. Sensitive arrays with N � 1 elements

require coherent amplifiers, so they are limited to radio frequencies by quantum noise.

Fig. 9.— A two-element quasi-monochromatic multiplying interferometer with baseline ~b

observing a source in direction ŝ responds to the Fourier component of sky brightness with

angular period λ/(b sin θ). The broad Gaussian envelope of the sinusoidal output is the

primary attenuation pattern of the individual dishes.



An array with N elements contains N(N − 1)/2 two-element interferometers. As N grows,

its synthesized or “dirty” beam becomes nearly Gaussian: However, the sum of sinusoids

has zero average, so there is a broad and shallow negative “bowl” under the Gaussian main

lobe.

The cosine correlator shown in Figure 9 responds only to even brightness distributions

Rc =

∫
I(ŝ) cos(2π~b · ŝ/λ) dΩ (94)

so it must be complemented by an odd sine correlator with response

Rs =

∫
I(ŝ) sin(2π~b · ŝ/λ) dΩ (95)

to image all brightness distributions. Such a complex correlator yields a complex visibility

V ≡ Rc − iRs = Ae−iφ =

∫
I(ŝ) exp(−i2π~b · ŝ/λ) dΩ , (96)

where A = (R2
c +R2

s )1/2 is the visibility amplitude and φ = tan−1(Rs/Rc) is the phase.

Compensating for the geometric delay τ0 = ~b· ~s0/c in direction s0 allows imaging at resolution

θs out to radius ∆θ with finite bandwidth ∆ν and finite sampling time ∆t given by

∆θ

θs

� ν

∆ν
and

2π∆t

P
≈ ∆t

1.37× 104 s
� θs

∆θ
. (97)
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3.7 Interferometers II

The Earth’s rotation varies the projected baseline coverage of an interferometer whose el-

ements are fixed on the ground. All baselines of an east–west interferometer remain in a

single plane perpendicular to the Earth’s north–south rotation axis as the Earth turns daily,

so the brightness distribution of a source is simply the two-dimensional Fourier transform of

the measured visibilities.

Fig. 10.— Viewed from a distant radio source at declination δ = +30◦ the antennas of a

two-element east–west interferometer at latitude +40◦ are shown as they would appear at

hour angles −6h, −3h, 0h, +3h, and +6h. The projected baseline traces an ellipse in the

(u, v) plane. The v-axis of the ellipse is smaller by a factor sin δ than the u-axis.

If the baselines are not confined to an east–west line, Earth rotation causes them to fill a

three-dimensional volume: The w axis points to the source in direction s0. The direction



cosines l, m, and n = cos θ = (1− l2 −m2)1/2, so

dΩ =
dl dm

(1− l2 −m2)1/2
(98)

and

V(u, v, w) =

∫ ∫
Iν(l,m)

(1− l2 −m2)1/2
exp[−i2π(ul + vm+ wn)]dl dm . (99)

In directions near ŝ0, wθ2 � 1 and θ � s−1/2 ≈ (λ/b)1/2, so

V exp(i2πw) =

∫ ∫
Iν(l,m)

(1− l2 −m2)1/2
exp[−i2π(ul + vm)]dl dm . (100)

A field wider than θ � w−1/2 can be imaged with two-dimensional Fourier transforms by

breaking it up into smaller facets, much like a fly’s eye, and later merging the facets.

The effective collecting area Ae of a two-element interferometer equals the effective collecting

area of each element. The correlator output noise is 21/2 lower than the square-law detector

noise of each antenna. The rms noise per polarization for a two-element interferometer is

σS =
21/2kTs

Ae(∆ν τ)1/2
. (101)

An array of N antennas contains N(N − 1)/2 independent two-element interferometers, so

its rms noise per polarization is

σS =
2kTs

Ae[N(N − 1)∆ν τ ]1/2
. (102)

In the limit N � 1, [N(N − 1)]1/2 → N and the effective area of an interferometer ap-

proaches NAe. Quantized digital correlators reduce the sensitivity (increase the noise) by

their correlator efficiency. For example, a three-level correlator has ηc ≈ 0.89.

The brightness sensitivity of an interferometer with the same point-source sensitivity as a

single dish is lower by a factor ≈ (D/b)2 approximately equal to the area covering factor of

the array, because the synthesized beam area ΩA is lower by this factor. In the Rayleigh-

Jeans limit

σT =

(
σS
ΩA

)
λ2

2k
. (103)

If the interferometer image is restored with a Gaussian beam,

ΩA =
πθ2

HPBW

4 ln 2
(104)

and

σT =

(
2 ln 2 c2

πkν2

)
σS

θ2
HPBW

. (105)
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4.1 Free–Free Radiation I

Thermal emission is produced by a source whose emitting particles are in local thermody-

namic equilibrium; e.g., radiating electrons have a Maxwellian velocity distribution (Ap-

pendix B.8). Free-free radiation is Larmor radiation from free electrons accelerated by elec-

trostatic scattering off ions:

|v̇| = F

me

=
Ze2

mer2
, (106)

where me ≈ 9.1 × 10−28 g is the electron mass and r is the distance between the electron

and the much heavier ion with Z electrons removed.

Fig. 11.— A Strömgren sphere of ionized hydrogen (Hii) with Strömgren radius RS inside a

thin shell of partially ionized hydrogen (Hi + Hii) surrounded by neutral hydrogen (Hi).

Radio radiation from a single electron-ion interaction: The distance of closest approach b

is called the impact parameter and the interval τ = b/v is called the collision time. The

Larmor radiation power is

P =
2

3

e2v̇2
⊥

c3
=

2e2

3c3

Z2e4

m2
e

(
cos3 ψ

b2

)2

(107)



and the total energy W emitted during the interaction of duration

dt =
b

v

dψ

cos2 ψ
(108)

is

W =

∫ ∞
−∞

P dt =
2

3

Z2e6

c3m2
eb

4

∫ π/2

−π/2

b

v

cos6 ψ

cos2 ψ
dψ =

πZ2e6

4c3m2
e

(
1

b3v

)
. (109)

In a T ∼ 104 K Hii region, v ≈ 7 × 107 cm s−1 and the minimum impact parameter is

bmin ∼ 10−7 cm, so νmax ≈ 1014 Hz, much higher than radio frequencies. In the approximation

that the power spectrum is flat out to ν = νmax and zero at higher frequencies, the average

energy per unit frequency emitted during a single interaction is approximately

Wν ≈
W

νmax

=

(
πZ2e6

4c3m2
eb

3v

)(
2πb

v

)
≈ π2

2

Z2e6

c3m2
e

(
1

b2v2

)
. (110)

Radio radiation from an Hii region: The number of electrons with speeds v to v+dv passing

by a stationary ion and having impact parameters in the range b to b + db during the time

interval t equals the number of electrons with speeds v to v + dv in the cylindrical shell:

ne (2πb db) v f(v) dv , (111)

where f(v) is the normalized (
∫
f(v)dv = 1) speed distribution of the electrons. The number

ṅc(v, b) of such collisions per unit volume per unit time is

ṅc(v, b) = (2πb)vf(v)neni . (112)

The spectral power at frequency ν emitted isotropically per unit volume is 4πjν , where jν is

the emission coefficient. Thus

4πjν =

∫ ∞
b=0

∫ ∞
v=0

Wν(v, b)ṅc(v, b)dv db =
π3Z2e6neni

c3m2
e

∫ ∞
v=0

f(v)

v
dv

∫ bmax

bmin

db

b
. (113)

where the finite limits bmin and bmax are needed to avoid divergence.
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4.1 Free–Free Radiation II

For the nonrelativistic Maxwellian velocity distribution (ERA Appendix B.8)

f(v) =
4v2

√
π

(
me

2kT

)3/2

exp

(
−mev

2

2kT

)
so (114)

∫ ∞
v=0

f(v)

v
dv =

4√
π

(
me

2kT

)3/2 ∫ ∞
v=0

v exp

(
−mev

2

2kT

)
dv =

(
2me

πkT

)1/2

(115)

and the free-free emission coefficient is

jν =
π2Z2e6neni

4c3m2
e

(
2me

πkT

)1/2

ln

(
bmax

bmin

)
. (116)

The maximum possible momentum transfer me∆v during the free–free interaction is twice

the initial momentum mev of the electron, so the impact parameter of a free–free interaction

cannot be smaller than

bmin ≈
Ze2

mev2
≈ 5.6× 10−8 cm (117)

if T ≈ 104 K. bmax is he largest value of b that can generate a significant amount of power

at some relevant radio frequency ν. Recall that the pulse power per unit bandwidth is small

above angular frequency ω ≈ v/b so

bmax ≈
v

ω
=

v

2πν
≈ 1.1× 10−2 cm if T ≈ 104 K . (118)

In LTE at temperature T , Kirchhoff’s law gives the absorption coefficient

κ =
jν

Bν(T )
≈ jνc

2

2kTν2
=

1

ν2T 3/2

[
Z2e6

c
neni

1√
2π(mek)3

]
π2

4
ln

(
bmax

bmin

)
. (119)

The limit bmax ∝ ν−1 so a good numerical approximation is κ ∝ ν−2.1 and

τ = −
∫

los

κ ds ∝
∫

neni

ν2.1T 3/2
ds ≈

∫
n2

e

ν2.1T 3/2
ds . (120)

The emission measure (EM) of an Hii region is defined by the integral of n2
e along the line

of sight expressed in astronomically convenient units:

EM

pc cm−6
≡
∫

los

(
ne

cm−3

)2

d

(
s

pc

)
, (121)

and a simple but good approximation for the free-free opacity is

τ ≈ 3.28× 10−7

(
T

104 K

)−1.35(
ν

GHz

)−2.1(
EM

pc cm−6

)
. (122)



Fig. 12.— The radio spectrum of an Hii region is a blackbody at low frequencies, with

spectral index α = +2 for a uniform cylinder and < 2 otherwise. At some frequency ν the

optical depth τ = 1, and at much higher frequencies α ≈ −0.1 because the opacity coefficient

κ(ν) ∝ ν−2.1. The source brightness at low frequencies equals the electron temperature, and

the brightness at high frequencies is proportional to the emission measure.

The optical depth τ and electron temperature T yield the brightness temperature

Tb = T (1− e−τ ) (123)

of free–free emission. The line-of-sight structure of an Hii region is not normally known, so

it is common to approximate the geometry of an Hii region by a circular cylinder whose axis

lies along the line of sight, and whose axis length equals its diameter. If the temperature

and density are constant throughout this volume and the Hii region distance is known, it is

easy to estimate the electron density, temperature, emission measure, and production rate

QH of ionizing photons from the observed radio spectrum.

A useful approximation relating the production rate of ionizing photons to the free–free

spectral luminosity Lν at the high frequencies where τ � 1 of an Hii region in ionization

equilibrium is (
QH

s−1

)
≈ 6.3× 1052

(
T

104 K

)−0.45(
ν

GHz

)0.1(
Lν

1020 W Hz−1

)
. (124)
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5.1 Magnetobremsstrahlung

Gyro radiation (v � c)

Cyclotron radiation (kinetic energy ∼ rest mass mec
2

Synchrotron radiation (kinetic energy � rest mass)

The magnetic force ~F on a particle

~F =
q(~v × ~B)

c
(125)

is perpendicular to the particle velocity ~v so ~F ·~v = 0, mv2/2 is constant, v‖ is constant, and

|v⊥| is constant. In a uniform magnetic field, a charged particle moves along a magnetic field

line on a helical path with constant linear and angular speeds. In the inertial frame moving

with velocity v‖, the particle orbits in a circle of radius r perpendicular to the magnetic field

with the angular velocity ω needed to balance the centripetal and magnetic forces:

m|v̇| = mω2r =
q

c
|~v × ~B| = q

c
ωrB , (126)

where the orbital frequency is ω = qB/(mc). The angular gyro frequency ωG is defined by

ωG ≡
qB

mc
. (127)

This definition holds for any particle speed, so the gyro frequency equals the actual orbital

frequency if and only if v � c. The electron gyro frequency νG = ωG/(2π) is only(
νG

MHz

)
= 2.8

(
B

gauss

)
. (128)

5.2 Synchrotron power radiated by a single electron

Larmor’s equation converted from the electron frame (primed) to the observer’s frame:

P = P ′ =
2(e′)2(a′⊥)2

3c3
=

2e2(a′⊥)2

3c3
=

2e2a2
⊥γ

4

3c3
= P

2e2

3c3
γ2 e

2B2

m2
ec

2
v2 sin2 α , (129)

where the constant angle α between the electron velocity ~v and the magnetic field ~B is called

the pitch angle. In terms of the Thomson cross section of an electron:

σT ≡
8π

3

(
e2

mec2

)2

≈ 6.65× 10−25 cm2 (130)

and the magnetic energy density UB = B2/(8π), P = 2σTβ
2γ2c UB sin2 α.

For an isotropic pitch-angle distribution, 〈sin2 α〉 = 2/3 and the average power is

〈P 〉 =
4

3
σTβ

2γ2cUB . (131)



5.3 Synchrotron spectrum radiated by a single electron

Fig. 13.— Relativistic aberration transforms the dipole power pattern of Larmor radiation

in the electron rest frame (dotted curve) into a narrow searchlight beam in the observer’s

frame. The solid curve is the transformed pattern for γ = 5. The observed angle between

the nulls of the forward beam falls to ∆θ = 2 arcsin(1/γ) ≈ 2/γ in the limit γ � 1.

Fig. 14.— The beamed radiation from an ultrarelativistic electron is visible only while the

electron’s velocity points within ±1/γ of the line of sight (∆θ ≈ 2/γ). During that time ∆t

the electron moves ∆x = v∆t toward the observer, almost keeping up with the radiation

that moves c∆t. This shortens the observed pulse duration by a factor (1− v/c).

Fig. 15.— Synchrotron radiation is a very spiky series of widely spaced narrow pulses of width

∆tp ≈ (γ2ωG sinα)−1. The numerical values on this plot of power versus time correspond to

an electron with γ ∼ 104 in a magnetic field B ∼ 10µG.

Most of the synchrotron power appears near the critical frequency

νc =
3

2
γ2νG sinα . (132)
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5.3.2 Synchrotron Spectra of Optically Thin Sources

For a source whose relativistic electrons have a power-law energy distribution

n(E)dE ∝ E−δdE , (133)

each electron emits power

P = −dE
dt

=
4

3
σTβ

2γ2cUB (134)

near the frequency

ν ≈ γ2νG , (135)

and the emission coefficient is

jνdν = −dE
dt
n(E)dE ∝ B(δ+1)/2ν(1−δ)/2 . (136)

Thus the [negative] spectral index is α = −d lnS/d ln ν = (δ − 1)/2.

5.3.3 Synchrotron Self-Absorption

The effective temperature of an ultrarelativistic electron emitting at frequency ν is

Te ≈
(

2πmecν

eB

)1/2
mec

2

3k
≈ (1.18× 106 K)

(
ν

Hz

)1/2(
B

gauss

)−1/2

. (137)

At low frequencies, the brightness temperature approaches the effective temperature, the

source become optically thick to synchrotron self-absorption. For a uniform cylinder source,

S(ν) ∝ ν5/2 and the magnetic field strength can be estimated from the source brightness

temperature: (
B

gauss

)
≈ 1.4× 1012

(
ν

Hz

)(
Tb

K

)−2

. (138)

5.4.1 Minimum Energy and Equipartition

Synchrotron sources contain both relativistic electrons with some energy density Ue and a

magnetic field with energy density UB = B2/(8π). For a given synchrotron luminosity L,

Ue ∝ B−3/2 and UB ∝ B2 . (139)

For an ion/electron energy ratio η, the total energy density is

U = (1 + η)Ue + UB . (140)

The minimum energy density occurs close to equipartition, when

particle energy density

magnetic field energy density
=

(1 + η)Ue

UB
=

4

3
. (141)



The synchrotron lifetime of a source is defined as the ratio of total electron energy Ee to

the energy loss rate L from synchrotron radiation: τs ≡ Ee/L ≈ c12B
−3/2
⊥ . The factor c12 is

plotted in ERA Figure 5.10.

5.4.2 Eddington Luminosity Limit

At the Eddington luminosity, radiation pressure balances gravity. For ionized hydrogen,

LE

4πr2

σT

c
=
GM(mp +me)

r2
≈ GMmp

r2
. (142)(

LE

L�

)
≈ 3.3× 104

(
M

M�

)
. (143)

5.4.3 Application to the Luminous Radio Galaxy Cyg A:

Cyg A is a luminous double radio source with Sν ≈ 2000 Jy(ν/GHz)−0.8 in a peculiar galaxy

at distance d ≈ 230 Mpc. Its radio lobes have radii R ≈ 30 kpc, and radio luminosity

between 107 and 1011 Hz L ≈ 1.33 × 1045 erg s−1 ≈ 3.5 × 1011L�. The energy source for

this radio emission is a compact object at the center of the host galaxy. The Eddington

limit (Equation 143) yields a lower limit to its mass M > 107M�. The minimum-energy

magnetic field strength is Bmin ∼ 10−4 gauss and the corresponding particle energy is Emin ≈
5×1060 erg ∼ 3×106M�c

2, so the compact central source is a supermassive black hole. The

synchrotron lifetime is τs ∼ 3× 106 yr.
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5.5 Inverse-Compton Scattering

Fig. 16.— For a relativistic electron at rest in the “primed” frame moving with velocity v

along the x-axis, the angle of incidence θ′ of incoming photons will be much less than the

corresponding angle θ in the rest frame of the observer. This figure shows the aberration of

an isotropic radiation field (left) seen in a moving frame with γ = (1−v2/c2)−1/2 = 5 (right).

Thomson scattering of this highly anisotropic radiation systematically reduces the electron

kinetic energy and converts it into inverse-Compton (IC) radiation by upscattering radio

photons to become optical or X-ray photons. Runaway inverse-Compton “cooling” of the

relativistic electrons also limits the maximum rest-frame brightness temperature of an inco-

herent synchrotron source to Tb ≈ 1012 K.

5.5 IC Power from a Single Electron

An electron at rest in an isotropic radiation field of energy density Urad = |~S|/c will scatter

power P = σTcUrad, where σT is the Thomson scattering cross section (Equation 130). In

the primed frame of an ultrarelativistic electron, P ′ = σTcU
′
rad = P . In the observer’s frame

Fig. 17.— Two successive photons striking an electron moving to the right.



shown in Figure 17, the time between the two photon hits is ∆t = ∆t′[γ(1 + β cos θ)]. Using

ν = (∆t)−1 yields the relativistic Doppler equation

ν ′ = ν[γ(1 + β cos θ)] . (144)

In the electron’s frame, the frequency ν ′ and energy E ′ = hν ′ of each photon are multiplied

by [γ(1 + β cos θ)]. Moreover, the rate at which successive photons arrive is multiplied by

the same factor. Thus

U ′rad =
Urad

4π

∫ 2π

φ=0

∫ π

θ=0

[γ(1 + β cos θ)]2 sin θ dθ dφ = Urad
4(γ2 − 1/4)

3
. (145)

The total photon power after IC scattering is

PIC =
4

3
σTcUrad

(
γ2 − 1

4

)
− σTcUrad =

4

3
σTcUrad(γ2 − 1) . (146)

Subtracting the initial photon power σTcUrad gives the net IC power

PIC =
4

3
σTcβ

2γ2Urad . (147)

The ratio of IC to synchrotron power is simply

PIC

Psyn

=
Urad

UB
. (148)

The IC loss is proportional to the radiation energy density and the synchrotron loss is

proportional to the magnetic energy density. Note that synchrotron and inverse-Compton

losses have the same electron-energy dependence (dE/dt ∝ γ2), so their effects on radio

spectra are indistinguishable.

IC scattering by an electron with Lorentz factor γ boosts the photon frequency from ν0 up

to
νmax

ν0

≈ 4γ2 and
〈ν〉
ν0

=
4

3
γ2 . (149)

Because the IC spectrum of a single electron is sharply peaked, the IC spectrum of a source

with electron-energy distribution n(E) ∝ E−γ will be a power law with spectral index

α =
δ − 1

2
, (150)

which is the same as that of synchrotron emission.

Synchrotron self-Compton radiation results from inverse-Compton scattering of synchrotron

radiation by the same relativistic electrons that produced the synchrotron radiation. Self-

Compton scattering adds to Urad and in bright sources can cause significant second-order

scattering, a runaway process that strongly cools relativistic electrons in sources significantly

brighter than

Tmax ∼ 1012 K . (151)

This limits the rest-frame brightness of incoherent synchrotron radiation.
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5.6 Extragalactic Radio Sources

Fig. 18.— A source moving with speed v < c at an angle θ < π/2 from the line of sight may

appear to be moving faster than c in projection onto the sky because the light travel time is

reduced by vt cos θ/c during time t.

The apparent transverse velocity of the moving component is

β⊥(apparent) =
β sin θ

1− β cos θ
. (152)

For any component speed β < 1, the angle θm = cos−1(β) = sin−1(1/γ) yields the maximum

apparent transverse velocity

max[β⊥(apparent)] =
β(1− β2)1/2

1− β2
= βγ , (153)

which can be “superluminal”: β⊥(apparent) > 1.

The relativistic Doppler formula (ERA Equation 144) relates the frequency ν ′ emitted in the

component frame to the observed frequency ν. Defining θ as the angle between the line of

sight and the velocity of an approaching component,

ν =
ν ′

γ(1− β cos θ)
. (154)

The Doppler factor δ defined by

δ ≡ [γ(1− β cos θ)]−1 =
ν

ν ′
(155)

can range from (2γ)−1 to 2γ. At θ = π/2 the transverse Doppler shift is δ = ν/ν ′ = 1/γ.

The observed flux density S of a relativistically moving component emitting isotropically

in its rest frame depends critically on its Doppler factor δ. The exact amount of Doppler

boosting caused by relativistic beaming is somewhat model dependent but probably lies in

the range

δ2+α <
S

S0

< δ3+α , (156)

where S0 would be the flux density if the source were stationary and α = −d logS/d log ν is

the (negative) spectral index.



5.6.2 Unified Models: AGN orientation effects—beaming and dust absorption.

5.6.3 Radio Emission from Normal Galaxies

The radio emission from a “normal” galaxy is powered by (1) free–free emission from Hii

regions ionized by short-lived M > 15M� stars and (2) synchrotron radiation from cosmic-

ray electrons accelerated in the supernova remnants of short-lived M > 8M� stars. It is

correlated with far-infrared emission and is an extinction-free tracer of recent star formation.

5.6.4 Extragalactic Radio Source Populations and Cosmological Evolution
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6.1 Pulsar Properties

Pulsars are magnetized neutron stars that appear to emit periodic short pulses of radio

radiation with periods between 1.4 ms and 23.5 s. The name pulsar blends “pulse” and

“star,” but pulsars are not pulsating stars. Like lighthouses, they continuously emit rotating

beams of radiation and appear to flash each time the beam sweeps across the observer’s line

of sight. They were discovered serendipitously by Cambridge University graduate student

Jocelyn Bell, who noticed that “scruffy” pulses in her chart-recorder data repeated every

sidereal day, so they were not likely terrestrial interference.

Neutron stars are physics laboratories sampling extreme conditions—deep gravitational po-

tentials GM/(rc2) ∼ 1, densities ρ ∼ 1014 g cm−3 exceeding those in atomic nuclei, and

magnetic field strengths as high as B ∼ 1014 or even 1015 gauss—not found on Earth.

Pulse periods P can be timed with fractional errors as small as 10−16. Accurate pulsar timing

permits exquisitely sensitive measurements of quantities such as the power of gravitational

radiation emitted by a pulsar in a binary system, neutron-star masses, general relativistic

effects in strong gravitational fields, orbital perturbations from binary companions as light

as planets, accurate pulsar positions and proper motions, and potentially the distortions of

interstellar space produced by long-wavelength gravitational radiation from the mergers of

supermassive black holes throughout the universe.

A nearly spherical star with mass M , radius R, and angular velocity Ω = 2π/P must have

equatorial centrifugal acceleration less than gravitational acceleration

Ω2R <
GM

R2
so P 2 >

(
4πR3

3

)
3π

GM
=

3π

Gρ
and R <

(
GMP 2

4π2

)1/3

. (157)

The “canonical” or typical neutron star parameters are mass ≈ Chandrasekhar mass M ≈
1.4M�, radius R ≈ 10 km, and moment of inertia I = 2MR2/5 ≈ 1045 g cm2.

Flux conservation during the core collapse of a massive star yields enormous pulsar magnetic

fields B ∼ 1012 G. If the magnetic dipole axis is mis-aligned by angle α from the spin axis

of a neutron star, the magnetic-field equivalent of Larmor’s equation is

Prad =
2

3

(m̈⊥)2

c3
, (158)

where m⊥ = m sinα is the perpendicular component of the magnetic dipole moment, which

is m = BR3 for a uniformly magnetized sphere. If the neutron star rotates with angular

velocity Ω = 2π/P , then

Prad =
2

3

m2
⊥Ω4

c3
=

2

3c3
(BR3 sinα)2

(
2π

P

)4

, (159)



where P is the pulsar period. This magnetic dipole radiation will appear at the very low

radio frequency ν = P−1 < 1 kHz, so low that it cannot propagate through the surrounding

ionized nebula or ISM. Magnetic dipole radiation extracts rotational kinetic energy from the

neutron star and causes the pulsar period to increase with time. The absorbed radiation

deposits energy in the surrounding nebula, the Crab Nebula being a prime example.

The rotational kinetic energy of a neutron star is

E =
IΩ2

2
=

2π2I

P 2
(160)

and the spin-down luminosity is

−Ė ≡ −dErot

dt
= − d

dt

(
1

2
IΩ2

)
= −IΩΩ̇ =

4π2IṖ

P 3
. (161)

The Crab pulsar has P = 0.033 s and Ṗ = 10−12.4. If I = 1045 g cm2, its spin-down

luminosity is −Ė ≈ 4× 1038 erg s−1 ≈ 105L�!

If Prad = −Ė, the minimum magnetic field strength at the neutron star surface is

B >

(
3c3I

8π2R6

)1/2

(PṖ )1/2 . (162)

For a canonical pulsar (
B

gauss

)
> 3.2× 1019

(
PṖ

s

)1/2

. (163)

If the spin-down luminosity equals the magnetic dipole radiation luminosity and (B sinα)

doesn’t vary, a pulsar’s age τ can be estimated from PṖ on the further assumption that the

pulsar’s initial period P0 � P today. Solving ERA Equation 6.23 for PṖ shows that

PṖ =
8π2R6(B sinα)2

3c3I
(164)

doesn’t vary. In the limit P 2
0 � P 2, the characteristic age of a pulsar defined by

τ ≡ P

2Ṗ
(165)

should be close to the actual age of the pulsar. In the case of the Crab pulsar of 1054 AD,

τ ≈ 1300 yr is close to the known age.

If Prad = −Ė then Equations 159 and 161 together imply Ω̇ ∝ Ω3. The braking index n

defined by Ω̇ ∝ Ωn can be measured via

n = 2− PP̈

Ṗ 2
. (166)

Braking indices in the range 1.4 ≤ n < 3 have been observed.

The PṖ diagram (ERA Figure 6.3) follows the lives of pulsars, their characteristic ages, and

their minimum magnetic field strengths.
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6.2 Pulsars and the Interstellar Medium

The electrons in the ISM make up a cold plasma whose refractive index is

µ =

[
1−

(νp

ν

)2
]1/2

, (167)

where ν is the frequency of the radio waves, νp is the plasma frequency

νp =

(
e2ne

πme

)1/2

≈ 8.97 kHz

(
ne

cm−3

)1/2

(168)

and ne is the electron number density. For a typical ISM value ne ∼ 0.03 cm−3, νp ∼ 1.5 kHz.

The pulse group velocity is νg = µc, so the dispersion delay is(
t

sec

)
≈ 4.149× 103

(
DM

pc cm−3

)(
ν

MHz

)−2

, (169)

where

DM ≡
∫ d

0

ne dl (170)

in units of pc cm−3 is called the dispersion measure. Crude distances to pulsars can be esti-

mated from their DMs by using ne ∼ 0.03 cm−3. Inhomogeneities in the ISM cause intensity

fluctuations or scintillations of pulsar signals, and ray scattering causes pulse broadening

∝ ν−4.

Uncorrected differential delays across the observing band cause dispersive smearing of pulses.

6.3 Pulsar Timing

Pulsar timing is the regular monitoring of the rotation period of the neutron star by precisely

tracking the pulse arrival times to unambiguously account for every rotation of the pulsar

over long periods (years to decades) of time.

The instantaneous pulse frequency is f = 1/P , and the instantaneous pulse phase φ is defined

by dφ/dt = f . Pulse phase is usually measured in turns of 2π radians, so 0 < φ < 1. For

timing, the average pulse profile is correlated with a template or model profile so that its

phase offset can be determined. When multiplied by the instantaneous pulse period, that

phase yields a time offset that can be added to a high-precision reference point on the profile

(for example, the left edge of the profile based on the recorded time of the first sample of the

observation) to create the time of arrival (TOA). In the nearly inertial frame of the Solar

System barycenter (center of mass), the rotation period of a pulsar is nearly constant, so

φ(t) can be approximated by the Taylor expansion

φ(t) = φ0 + f(t− t0) +
1

2
ḟ(t− t0)2 + · · · , (171)



where φ0 and t0 are arbitrary reference phases and times for each pulsar. The critical

constraint for pulsar timing is that the observed rotational phase difference between each of

the TOAs must contain an integer number of rotations. Many corrections have to be applied

to the observed TOAs before φ(t) can be expressed as a Taylor series (Equation 171); e.g.,

t = tt − t0 + ∆clock −∆DM + ∆R� + ∆E� + ∆S� + ∆R + ∆E + ∆S , (172)

where ∆clock is the observatory clock correction, ∆R� ≈ 500 cos β s is the Roemer light

travel delay across the Earth’s orbit for a pulsar at ecliptic latitude β, etc. Pulsar position

errors ∆λ in ecliptic longitude and ∆β in ecliptic latitude can be measured with sub-arcsec

accuracy via pulsar timing. Roemer delays across the orbits of binary pulsars yield accurate

measures of the pulsar orbital parameters including small post-Keplerian relativistic effects.

Timing measurements of orbital decay in the Hulse-Taylor binary pulsar B1913+16 showed

that its orbit is decaying as predicted by general relativity for the emission of gravitational

radiation. The double-pulsar binary J0737−3039 contains two pulsar clocks whose timing has

demonstrated the accuracy of general relativity and determined the masses of both pulsars.

Pulsar timing arrays (PTAs) are likely to detect the low-frequency (nHz) gravitational-wave

background from merging supermassive black-hole binaries in the near future.
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7.1 Spectral Lines

Spectral lines are narrow (∆ν � ν) emission or absorption features in the spectra of gaseous

and ionized sources: recombination lines of ionized hydrogen and heavier atoms, rotational

lines of polar molecules such as CO, and the λ = 21 cm hyperfine line of interstellar Hi.

Spectral-line emission and absorption are intrinsically quantum phenomena. Particles of

momentum p have De Broglie wavelengths λ = h/p, where Planck’s constant h ≈ 6.63 ×
10−27 erg s has dimensions of action (m l2 t), the same as energy×time or angular momen-

tum. Stimulated emission is important at radio frequencies hν � kT .

7.2.1 Recombination Line Frequencies

In the Bohr model of the hydrogen atom, the circular electron orbits have circumferences nλ

corresponding to standing waves. The Bohr radius an of the nth permitted orbit obeys

2πan = nλ = n
h

p
=

nh

mev
, (173)

where n is called the principal quantum number. The Coulomb and centrifugal forces must

balance: e2/a2
n = mev

2/an. Then, in terms of the reduced Planck’s constant ~ ≡ h/(2π),

an =
n2~2

mee2
=

[6.63/(2π)× 10−27 erg s]2

9.11× 10−28 g · (4.8× 10−10 statcoul)2
n2 ≈ 0.53× 10−8 cm · n2 . (174)

The electron in a Bohr atom can fall from the level (n + ∆n) to n, where ∆n and n are

any natural numbers (1, 2, 3, . . .), by emitting a photon whose energy ∆E = hν equals the

energy difference between the initial and final levels.

En = T + V = −T = V/2 = − e2

2an
= −e2

(
mee

2

2n2~2

)
= −

(
mee

4

2~2

)
1

n2
(175)

so

ν =

(
2π2mee

4

h3c

)
c

[
1

n2
− 1

(n+ ∆n)2

]
. (176)

The factor in large parentheses is the Rydberg constant R∞ = 1.09737312 . . .×105 cm−1 and

R∞c = 3.28984 . . .× 1015 Hz is the Rydberg frequency. For a finite nuclear mass M � me,

ν = RMc

[
1

n2
− 1

(n+ ∆n)2

]
, where RM ≡ R∞

(
1 +

me

M

)−1

. (177)



7.2.2 Recombination Line Strengths

The spontaneous emission rate is the average rate at which an isolated atom emits photons.

Radio photons are emitted by atoms with n� 1, so we can invoke the correspondence prin-

ciple, Bohr’s hypothesis that systems with large quantum numbers behave almost classically,

and use the classical Larmor’s formula to calculate the time-averaged radiated power 〈P 〉
for an electric dipole with dipole moment ean:

〈P 〉 =
2e2

3c3
(ω2an)2〈cos2(ωt)〉 =

2e2

3c3
(2πν)4a

2
n

2
. (178)

The photon emission rate (s−1) equals the average power emitted by one atom divided by

the energy of each photon. The spontaneous emission rate for transitions from level n to

level (n− 1) is denoted by An,n−1:

An,n−1 =
〈P 〉
hν

, where ν ≈ 2R∞c∆n

n3
(179)

in the limit ∆n� n. In that limit, An+1,n ≈ An,n−1 also. After some algebra,

An+1,n ≈
〈P 〉
hν
≈
(

64π6mee
10

3c3h6

)
1

n5
≈ 5.3× 109

(
1

n5

)
s−1 . (180)

For example, the 5.0089 GHz H109α transition rate is A110,109 ≈ 0.3 s−1. The corresponding

natural line width ∆ν ∼ An+1,n/π ∼ 0.1 Hz is much less than the collisional broadening and

very much less than the line width caused by Doppler shifts reflecting radial velocities vr. If

vr � c, then ν ≈ ν0(1− vr/c).

Thermal gas in LTE has a Maxwellian velocity distribution given by ERA Equation B.49,

so its normalized line profile φ(ν) is the Gaussian

φ(ν) =
c

ν0

(
M

2πkT

)1/2

exp

[
−Mc2

2kT

(ν − ν0)2

ν2
0

]
(181)

characterized by its half-power width ∆ν and peak height φ(ν0):

∆ν =

[
8 ln(2) k

c2

]1/2(
T

M

)1/2

ν0 and φ(ν0) =

(
ln 2

π

)1/2
2

∆ν
. (182)
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7.3.1 Einstein Coefficients

The three Einstein coefficients for a two-level system are:

(1) AUL is the spontaneous emission rate (s−1) per atom or molecule.

(2) BLU, multiplied by the line-profile weighted mean radiation energy density

ū ≡
∫ ∞

0

uν(ν)φ(ν) dν , (183)

is the absorption rate (s−1) per atom or molecule in the lower energy state.

(3) BUL multiplied by ū is the stimulated emission (or negative absorption) rate (s−1) per

atom or molecule in the upper energy state. Stimulated emission is the emission of a second

photon with the same energy and direction as the incident photon.

Thermodynamic equilibrium (TE) is a stationary state, so in a system with atomic or molec-

ular density nU in the upper energy state and nL in the lower energy state, the rate of photon

creation must equal the rate of photon destruction:

nU(AUL +BULū) = nLBLUū . (184)

In TE, the Boltzmann equation relates nU and nL:

nU

nL

=
gU

gL

exp

[
−(EU − EL)

kT

]
=
gU

gL

exp

(
−hν0

kT

)
, (185)

where gU and gL are the statistical weights equal to the number of distinct states having

those energies. In TE, ū = (4π/c)Bν(ν0) and

ū =
AUL

(nL/nU)BLU −BUL

= AUL

[
gL

gU

exp

(
hν0

kT

)
BLU−BUL

]−1

≈ 4π

c

2hν3
0

c2

[
exp

(
hν0

kT

)
−1

]−1

.

(186)

The equation

AUL

BUL

[
gL

gU

BLU

BUL

exp

(
hν0

kT

)
− 1

]−1

=
8πhν3

0

c3

[
exp

(
hν0

kT

)
− 1

]−1

(187)

is unusual because it is true for all T . Consequently, the temperature-independent parts (out-

side the brackets) must be equal and the temperature-dependent parts (inside the brackets)

must be equal, yielding the two equations of detailed balance

gL

gU

BLU

BUL

= 1 and
AUL

BUL

=
8πhν3

0

c3
(188)

that determine both BUL and BLU in terms of AUL for any system, even if not in TE or LTE.



7.3.2 Line Radiative Transfer and Detailed Balance

dIν
ds

= −κIν+jν = −
(
hν0

c

)
nLBLUφ(ν)Iν+

(
hν0

c

)
nUBULφ(ν)Iν+

(
hν0

4π

)
nUAULφ(ν) (189)

= −
(
hν0

c

)
(nLBLU − nUBUL)φ(ν)Iν +

(
hν0

4π

)
nUAULφ(ν) (190)

In LTE, the net line opacity coefficient can be written in terms of AUL only:

κ(ν) =
c2

8πν2
0

gU

gL

nLAUL

[
1− exp

(
−hν0

kT

)]
φ(ν) . (191)

The two terms in brackets represent ordinary and negative opacity, respectively. In the

Rayleigh-Jeans limit hν � kT , the net opacity ∝ T−1 and Bν ∝ T , so κBν ∝ T 0 and the

brightness of an optically thin (τ � 1) radio emission line is proportional to the column

density of emitting gas but can be nearly independent of the gas temperature.

Even if a two-level system is not in LTE, its excitation temperature Tx is defined by

nU

nL

≡ gU

gL

exp

(
−hν0

kTx

)
. (192)

In a two-level system, Tx is determined by a balance between radiative and collisional ex-

citations and de-excitations. If collisions cause nLCLU excitations per unit volume per unit

time from the lower level to the upper level and nUCUL de-excitations per unit volume per

unit time from the upper level to the lower level, then Equation 184 becomes

nU(AUL +BULū+ CUL) = nL(BLUū+ CLU) . (193)

If the spontaneous emission rate is much larger than the collision rate, Tx → Tb; if the

collision rate is much higher than the spontaneous emission rate, Tx → Tk. For any AUL and

CUL, Tx lies between Tk and Tb.

7.5 Masers

If the upper energy level is overpopulated (nU/nL > gU/gL), then Tx < 0 and the net line

opacity coefficient (Equation 191) is negative. This implies brightness gain instead of loss;

the intensity of a background source at frequency ν0 will be amplified.

Maser emission quickly depopulates the upper energy level, so masers have to be “pumped” to

emit continuously. Typically one or more higher energy levels absorb radiation from a pump

source (e.g., infrared continuum from a star or an AGN), and radiative decays preferentially

repopulate the upper energy level. This radiative pumping process produces no more than

one maser photon per pump photon, so the pump energy required is proportional to the

frequency ν = E/h of the pump photon. If the maser photon emission rate is limited by the

pump luminosity, the maser is described as being saturated; if the pump power is more than

adequate, the maser is unsaturated. Collisions can also pump masers.
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7.6. Recombination Line Sources in LTE

The net line opacity coefficient for the n → n + 1 hydrogen recombination line in LTE is

obtained by combining Equation 191 for the net line absorption coefficient with the Saha

equation

nn = n2

(
h2

2πmekTe

)3/2

npne exp

(
χn
kTe

)
, (194)

where χn < 0 is the ionization potential of the nth energy level. For large n, |χn| � kTe and

the exponential factor exp[χn/(kTe)] ≈ 1 can be ignored. At the line center frequency ν0 it

is

κ(ν0) ≈
(

n2
e

T
5/2
e ∆ν

)(
4πe6h

3m
3/2
e k5/2c

)(
ln 2

2

)1/2

(195)

for any level n� 1.

The optical depth τL =
∫
κ ds at the line center frequency ν0 can be expressed in terms of

the emission measure EM defined by Equation 121. In astronomically convenient units,

τL ≈ 1.92× 103

(
Te

K

)−5/2(
EM

pc cm−6

)(
∆ν

kHz

)−1

. (196)

Because τL � 1 in all known Hii regions, the brightness temperature contributed by a

recombination emission line at its center frequency ν0 is

TL ≈ TeτL ≈ 1.92× 103

(
Te

K

)−3/2(
EM

pc cm−6

)(
∆ν

kHz

)−1

. (197)

At frequencies high enough that the free–free continuum is also optically thin, the peak

line-to-continuum ratio (which occurs at frequency ν0) in LTE is

TL

TC

≈ 7.0× 103

(
∆v

km s−1

)−1(
ν

GHz

)1.1(
Te

K

)−1.15[
1 +

N(He+)

N(H+)

]−1

, (198)

where ∆v is the line FWHM expressed as a velocity and the typical He+/H+ ion ratio is

N(He+)/N(H+) ≈ 0.08. The term in square brackets is necessary because He+ contributes

to the free–free continuum emission but not to the hydrogen recombination line.

The line-to-continuum ratio yields an estimate of the electron temperature Te that is inde-

pendent of the emission measure so long as the frequency is high enough that the continuum

optical depth is small:(
Te

K

)
≈
[
7.0× 103

(
ν

GHz

)1.1

1.08−1

(
∆v

km s−1

)−1(
TC

TL

)]0.87

. (199)



7.7.1 Molecular Line Frequencies

The permitted rotation rates of diatomic molecules are determined by the quantization of

angular momentum L = n~, n = 1, 2, 3, . . .

In the inertial center-of-mass frame, L = Iω, where I is the moment of inertia and ω is the

angular velocity of rotation. Nearly all of the mass is in the two compact (much smaller

than re) nuclei, so I = (mAr
2
A +mBr

2
B), L = (mAr

2
A +mBr

2
B)ω, and

L =

(
mAmB

mA +mB

)
r2

eω = mr2
eω , (200)

where

m ≡
(

mAmB

mA +mB

)
(201)

is the reduced mass of the molecule. The rotational kinetic energy is Erot = Iω2/2. The

quantization of angular momentum to integer multiples of ~ implies that rotational energy

is also quantized. The corresponding energy eigenvalues of the Schrödinger equation are

Erot =

(
~2

2I

)
J(J + 1) , J = 0, 1, 2, . . . (202)

The changes in rotational energy are restricted by the quantum-mechanical selection rule

∆J = ±1. Going from J to J − 1 releases energy

∆Erot = [J(J + 1)− (J − 1)J ]
~2

2I
=

~2J

I
. (203)

The frequency of the photon emitted during this rotational transition is

ν =
∆Erot

h
=

~J
2πI

=
hJ

4π2mr2
e

, J = 1, 2, . . . (204)

Thus a plot of the radio spectrum of a particular molecular species in an interstellar cloud

will look like a ladder whose steps are all harmonics of the fundamental frequency that is

determined solely by the moment of inertia I = mr2
e of that species. Nonlinear molecules

such as the symmetric-top ammonia (NH3) with two distinct rotational axes have more

complex spectra consisting of many parallel ladders.
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7.7.2 Molecular Excitation

Molecules are excited into Erot > 0 states by ambient radiation and by collisions in a dense

gas. The minimum gas temperature Tmin needed for significant collisional excitation is

Tmin ∼
Erot

k
≈ νh(J + 1)

2k
. (205)

7.7.3 Molecular Line Strengths

The electric dipole moment of a polar diatomic molecule with charges +q and −q is |~p| ≈ qre.

Each charge obeys the Larmor field Equation 36, so the total radiated electric field is

E⊥ =
q(ω2rA + ω2rB) sin θ

rc2
exp(−iωt) , (206)

the instantaneous power emitted is

P =
2q2

3c3
ω4|re exp(−iωt)|2 , (207)

and the time-averaged power is

〈P 〉 =
2q2

3c3
(2πν)4 r

2
e

2
=

64π4

3c3
ν4

(
qre

2

)2

=
64π4

3c3
|µ|2ν4 , (208)

and the mean electric dipole moment is

|µ|2 ≡
(
qre

2

)2

. (209)

The spontaneous emission coefficient is

AUL =
〈P 〉
hν

=
64π4

3hc3
|µUL|2ν3 , (210)

where

|µJ→J−1|2 =
µ2J

2J + 1
(211)

is the quantum mechanical value of µUL for the J → J − 1 transition. In convenient units,(
AJ→J−1

s−1

)
≈ 1.165× 10−11

∣∣∣∣ µD
∣∣∣∣2( J

2J + 1

)(
ν

GHz

)3

‘ . (212)

Here the dipole moment is given in units of debyes (1 D ≡ 10−18 statcoul cm).



For any molecular transition, there is a critical density defined by

n∗ ≈ AUL

σv
(213)

at which the radiating molecule suffers collisions at the rate n∗σv ≈ n(H2)σv equal to the

spontaneous emission rate AUL. Typical collision cross sections are σ ∼ 10−15 cm2 and the

average velocity of the abundant H2 molecules is v ≈ (3kT/m)1/2. The CO J = 1→ 0 critical

density is only n∗ ∼ 103 cm−3, so CO emission is ubiquitous in galactic molecular clouds.

Transitions with high emission coefficients (e.g., the HCN (hydrogen cyanide) J = 1 → 0

line at ν ≈ 88.63 GHz has AUL ≈ 2.0× 10−5 s−1) are collisionally excited only at very high

densities (n∗ ≈ 105 cm−3 for HCN J = 1→ 0). They are valuable for highlighting the very

dense gas directly associated with the formation of individual stars.

The line opacity coefficient

κ(ν) =
c2

8πν2
0

gU

gL

nLAUL

[
1− exp

(
−hν0

kTx

)]
φ(ν). (214)

plus the column density NL ≡
∫
nL ds yield the line center opacity

τ0 =

∫
κ0 ds =

(ln 2)1/2

4π3/2

c3

ν3
0

gU

gL

AUL

∆ν
NL

[
1− exp

(
hν

kTx

)]
. (215)

In the limit hν � kTx and τ0 � 1, the line brightness

∆Tb ≈ (Tx − Tc)τ0 =

(
Tx − Tc

Tx

)
NL

(ln 2)1/2

4π3/2

hc3

kν2
0

gU

gL

AUL

∆v
(216)

is proportional to the column density NL. The 12C16O line is often optically thick, but lines

of rare isotopologues such as 13C16O are usually optically thin.

The fairly uncertain CO to H2 conversion factor in our Galaxy is

XCO = (2± 0.6)× 1020 cm−2 (K km s−1)−1. (217)

Neutral hydrogen gas in the disk of our Galaxy moves in nearly circular orbits around the

Galactic center. Radial velocities vr measured from the Doppler shifts of Hi λ = 21 cm

emission lines encode information about the kinematic distances d of Hi clouds.

The Hi line is an extremely useful tool for studying gas in the ISM of external galaxies and

tracing the large-scale distribution of galaxies in the universe because Hi is detectable in

most spiral galaxies and in some elliptical galaxies. The Hubble distance to a galaxy with

recession velocity vr is D ≈ vr/H0.

Beware the inconsistent “radio” and “optical” radial velocity conventions that were estab-

lished when most observed radial velocities were much less than the speed of light.
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7.8 The Neutral Hydrogen 21 cm Line

Neutral hydrogen (Hi) atoms are abundant and ubiquitous in low-density regions of the ISM.

They are detectable in the λ ≈ 21 cm hyperfine line resulting from the magnetic interaction

between the quantized electron and proton spins. When the relative spins change from

parallel to antiparallel, a photon is emitted with frequency

ν10 =
8

3
gI

(
me

mp

)
α2(RMc) ≈ 1420.405751 MHz , (218)

where gI ≈ 5.58569 is the nuclear g-factor for a proton, α ≡ e2/(~c) ≈ 1/137.036 is the

dimensionless fine-structure constant, and RMc is the hydrogen Rydberg frequency (Equa-

tion 177).

The emission coefficient is

A10 ≈
64π4

3hc3
ν3

10|µB|2 ≈ 2.85× 10−15 s−1 , (219)

where

|µB| =
e~

2mec
≈ 9.27401× 10−21 erg gauss−1 (220)

is called the Bohr magneton. The low emission coefficient implies an extremely low critical

density (Equation 213) n∗ � 1 cm−3, so collisions can easily maintain this transition in

LTE, even in the outermost regions of normal spiral galaxies and in tidal tails of interacting

galaxies.

The Hi line excitation temperature is called the spin temperature:

n1

n0

≡ g1

g0

exp

(
−hν10

kTs

)
, (221)

where the statistical weights of the upper and lower spin states are g1 = 3 and g0 = 1,

respectively. Because hν10/(kT )� 1 in the ISM,

n1

n0

≈ g1

g0

= 3 and nH = n0 + n1 ≈ 4n0 . (222)

The opacity coefficient (Equation 191) of the Hi line is

κ(ν) ≈ 3c2

32π

A10nH

ν10

h

kTs

φ(ν) , (223)

where nH is the number of neutral hydrogen atoms per cm3. The neutral hydrogen column

density along any line of sight is defined as

ηH ≡
∫

los

nH(s)ds . (224)



The total opacity τ of isothermal Hi is proportional to the column density. If τ � 1, then

the integrated Hi emission-line brightness Tb is proportional to the column density of Hi and

is independent of the spin temperature Ts because Tb ≈ Tsτ and τ ∝ T−1
s in the radio limit

hν10/(kTs) � 1. Thus ηH can be determined directly from the integrated line brightness

when τ � 1. In astronomically convenient units it can be written as(
ηH

cm−2

)
≈ 1.82× 1018

∫ [
Tb(v)

K

]
d

(
v

km s−1

)
, (225)

where Tb is the observed 21-cm-line brightness temperature at radial velocity v and the

velocity integration extends over the entire 21-cm-line profile.

Beware that astronomers still use inconsistent radial velocity conventions that were estab-

lished when most observed radial velocities were much less than the speed of light: the

“radio” velocity for any vr(radio) is

vr(radio) ≡ c

(
νe − νo

νe

)
(226)

and the “optical” velocity defined for any vr(optical) by

vr(optical) ≡ c

(
λo − λe

λe

)
= cz, (227)

where z is redshift.

If the Hi emission from a galaxy is optically thin, then the integrated line flux is proportional

to the neutral hydrogen mass

(
MH

M�

)
≈ 2.36× 105

(
D

Mpc

)2 ∫ [
S(v)

Jy

](
dv

km s−1

)
. (228)

The total galaxy mass enclosed within radius r from its center is(
M

M�

)
≈ 2.3× 105

(
vrot

km s−1

)2(
r

kpc

)
, (229)

where vrot is the rotation velocity. The large total masses implied by Hi rotation curves

provided some of the earliest evidence for the existence of cold dark matter in galaxies. The

empirical Tully-Fisher relation L ∝ vm between the luminosity L and maximum rotation

velocity vL provides distance that is independent of the Hubble distance and can be used to

estimate the peculiar velocities of galaxies relative to the smooth Hubble flow.

The redshifted Hi line traces the dark ages prior between recombination at z ≈ 1091 and the

reionization of the universe by the first stars and galaxies. The emission/absorption signals

are very weak, but the potential scientific payoff of detection is so great that several groups

around the world are developing instruments to detect them.
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Spontaneous Emission and the Dark Energy Problem

Most of this course presented results from problems that have already been solved. For

example, Planck solved the Rayleigh-Jeans “ultraviolet catastrophe” problem in 1905 by

quantizing radiation into photons of energy E = hν. However, there are fundamental prob-

lems still waiting to be solved by the next Max Planck, maybe you. The most important

unsolved problem in physics today is the discrepancy between spontaneous emission and the

density of dark energy.

In 1916 Einstein proved that stimulated emission exists and derived the relation (ERA

Equations 7.51)
AUL

BUL

=
8πhν3

0

c3
(230)

between the stimulated emission coefficient BUL and spontaneous emission rate AUL for a

spectral line of frequency ν0. He used only classical thermodynamics (the Boltzmann equa-

tion) and “old” quantum mechanics (the Planck blackbody radiation law and the relation

E = hν for photons). The classical Larmor formula could be used to approximate AUL as a

continuous radiation process, but in 1916 there was no quantum mechanical explanation for

the spontaneous emission of a discrete photon.

What does “spontaneous” mean in physics anyway? Shouldn’t everything have a cause?

What makes an isolated atom in a perfect vacuum (so there is no stimulated emission) wait

a certain amount of time ∼ A−1
UL and then suddenly decide to emit a photon?

Consider a single isolated hydrogen atom in intergalactic space where there are few Lyα

photons. If its electron is orbiting in the n = 2 electronic energy level, we know that the

electron will “spontaneously” emit a Lyα photon and drop to the n = 1 electronic ground

state. The spontaneous emission rate for this process is A2,1 ≈ 6.3×108 s−1; that is, a lonely

but excited hydrogen atom typically takes only τ2,1 ≡ A−1
21 ≈ 1 nanosecond to emit a Lyα

photon. Except in the rare case that a Lyα photon hits the hydrogen atom during that

nanosecond, that emission is not stimulated emission.

As the quantum mechanics developed after 1916, it became clear that no emission can be

truly “spontaneous” in a perfect classical vacuum. The stationary wave functions |ψU〉 and

|ψL〉 describing the upper (n = 2) and lower (n = 1) electronic energy states of that hydrogen

atom are orthogonal and have no overlaps 〈ψL|ψU〉 = 0. The transition rate between orthog-

onal states is zero and no truly spontaneous emission can occur. Some perturbing Hamilto-

nian operator V is needed to make the perturbed states overlap so that 〈ψL|V |ψU〉 > 0, thus

allowing the electron to fall from n = 2 to n = 1 and emit a Lyα photon. In this quantum-

mechanical picture, stimulated emission is easily understood: a Lyα photon hitting the n = 2

hydrogen atom provides the needed perturbation.



Thus quantum mechanics must treat all line emission as stimulated emission, and what ap-

pears to be “spontaneous” emission in a vacuum is actually stimulated by “virtual” photons

of energy ∆E that appear briefly out of the quantum vacuum and vanish on time scales ∆t

consistent with the uncertainty principle ∆E∆t > ~ ≡ h/(2π). Virtual photons may also

account for the Casimir force attracting conducting plates and for Hawking radiation from

black holes. Equation 230 determines the radiation energy density ū and spectrum of the

virtual photons. Equating the spontaneous emission rate AUL to the stimulated emission

rate ū(ν0)BUL gives

AUL =

(
8πhν3

0

c3

)
BUL = ū(ν0)BUL (231)

for a transition at frequency ν0. Thus virtual photons in the quantum vacuum provide the

spectral energy

ū(ν0) =

(
8πhν3

0

c3

)
(232)

and the total radiation energy density u of the quantum vacuum needed to explain sponta-

neous emission at all frequencies ν is:

u =

∫ ∞
ν=0

ū(ν) dν =
8πh

c3

∫ ∞
ν=0

ν3 dν . (233)

Note that this energy density u depends only on the immutable physical constants h and c;

it does not change as the universe expands. In this sense, it acts like the dark energy that is

currently accelerating the expansion of the universe. Unfortunately, like the Rayleigh-Jeans

radiation energy density, the vacuum energy density in Equation 233 formally diverges. By

analogy with the Rayleigh-Jeans “ultraviolet catastrophe,” this has been called the “vacuum

catastrophe.”

Physicists have tried to tame the infinite u by setting a finite upper limit νmax to the frequency

or a lower limit to the wavelength λmin for which the integration in Equation 233 can be

meaningful:

u =
8πh

c3

∫ νmax

ν=0

ν3 dν =
2πhν4

max

c3
=

2πhc

λ4
min

(234)

For example, no photon or other particle can have an energy greater than the Planck energy

EP defined by the requirement that two such photons do not form a black hole. A photon

of energy E has a wavelength λ = c/ν = hc/E and mass m = E/c2, so we set

EP =
hc

λP

=
Gm2

P

rP

(235)

and take rP ≈ λP/(2π) as the “radius” of the particle to derive the Planck mass mP = EPc
2

at which the photon energy equals its gravitational potential energy:

mP =

(
~c
G

)1/2

≈ 2.18× 10−5 g . (236)



The Planck energy is very large for a photon (EP = mPc
2 ≈ 1.96×1016 erg ≈ 1.22×1019 GeV

is comparable with the kinetic energy of a speeding freight train) and the Planck scale

lP ≡ rP =
~c
EP

=
~c

(~c/G)1/2 c2
=

(
~G
c3

)1/2

≈ 1.61× 10−33 cm (237)

is very small. The last four equations are unusual because they include both quantum

mechanics and gravity, as indicated by the fact that they contain both h and G. There is

still no quantum mechanics of gravity, so their meaning is uncertain. For example, is space

continuous or quantized on scales lP ∼ 10−33 cm?

Inserting λP = λmin into Equation 234 gives

u = 2π

(
hc

λP

)
1

λ3
P

. (238)

The quantity in parentheses is just the Planck energy EP, and λ3
P is a volume, so u is an

energy density. Its value is not infinite, but it is still an impossibly large ∼ 10113 erg cm−3!

Had u been this large, the universe would have collapsed immediately after the big bang.

Dark energy is observed to account for about 70% of the critical energy density Ec = ρcc
2

of the universe, where ρc ≈ 9.5× 10−30 g cm−3 for H0 = 71 km s−1 Mpc−1 (ERA Equation

2.113), so the actual energy density of dark energy is only uDE ≈ 6× 10−9 erg cm−3. Equa-

tion 238 is a factor of ≈ 10121 higher, earning it the dubious honor of being called “the worst

theoretical prediction in the history of physics.” According to physics guru Steven Wein-

berg, “Dark energy is not only terribly important for astronomy, it’s the central problem for

physics. It’s been the bone in our throat for a long time.” Quantum gravity is not yet ready

for prime time.

If supersymmetry (SUSY) theories are correct, the maximum frequency in Equation 234

might be lowered, but not nearly enough: the predicted vacuum energy density is still too

high by a factor of ∼ 1057. The fact that uDE is not exactly zero also suggests that the

vacuum energy density is not exactly zero.

What is the maximum frequency νmax that is consistent with the observed energy density of

dark energy? Solving Equation 234 for νmax and setting u = uDE yields

νmax =

(
c3uDE

2πh

)1/4

≈
[

(3× 1010 cm s−1)3 · 6× 10−9 erg cm−3

2 · 3.14 · 6.63× 10−27 erg s

]1/4

≈ 1.40× 1012 Hz (239)

The rest frequency of the Lyα line (ERA Equation 7.13 with n = 1 and ∆n = 1) is

ν0 = RMc

[
1

12
− 1

(1 + 1)2

]
= 3.28805× 1015 Hz× 3

4
≈ 2.47× 1015 Hz , (240)

much larger than the νmax ≈ 1.40× 1012 Hz from Equation 239. The vacuum catastrophe is

a problem even at infrared and optical spectral-line frequencies, so just tweaking νmax cannot

avoid it.



Appendix C. Review of Special Relativity

Galilean transform for primed frame moving with velocity v = vx:

x = x′ + vt′ y = y′ z = z′ t = t (241)

x′ = x− vt y′ = y z′ = z t′ = t (242)

Lorentz transform:

Assume invariant speed c instead of t = t′. c→∞ gives Galilean transform. Assume space

is homogeneous and isotropic. Then the Lorentz transform is

x = γ(x′ + vt′) y = y′ z = z′ t = γ(t′ + βx′/c) (243)

x′ = γ(x− vt) y′ = y z′ = z t′ = γ(t− βx/c) (244)

where β ≡ v/c and γ ≡ (1− v2/c2)−1/2 = (1− β2)−1/2. The differential Lorentz transform is

∆x = γ(∆x′ + v∆t′) ∆y = ∆y′ ∆z = ∆z′ ∆t = γ(∆t′ + β∆x′/c) (245)

∆x′ = γ(∆x− v∆t) ∆y′ = ∆y ∆z′ = ∆z ∆t′ = γ(∆t− β∆x/c) (246)

Length contraction and time dilation by the Lorentz factor γ.

Velocity addition for particle with velocity ~u = (ux, uy, uz) in the unprimed frame and
~u′ = (u′x, u

′
y, u
′
z) in the primed frame:

ux =
u′x + v

(1 + vu′x/c
2)

and u′x =
ux − v

(1− vux/c2)
(247)

uy =
u′y

γ(1 + vu′x/c
2)

and uz =
u′z

γ(1 + vu′x/c
2)

(248)

u′y =
uy

γ(1− vux/c2)
and u′z =

uz
γ(1− vux/c2)

(249)

Mass m′ = γm, energy E ′ = m′c2 = γmc2 = γE, power P ′ = P , charge q′ = q


