Welcome to the NRAO Town Hall

Tony Beasley NRAO

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

NRAO Town Hall Agenda

- NRAO Overview
 - Tony Beasley, NRAO

Star Formation

 Rachel Akeson, Research Scientist, NASA Exoplanet Science Institute, IPAC

The High-z Universe

 Dominik Riechers, Assistant Professor of Astronomy, Cornell University

Audience Q&A

NRAO Overview

Research Facilities

• Semester 2013B Call for Proposals

NSF Portfolio Review Impacts

Community Support

Research Facilities

Very Large Array

Green Bank Telescope

Very Long Baseline Array

Atacama Large Millimeter/submm Array

Atacama Large Millimeter/submm Array

- ALMA Early Science underway since Sep 2011
- Cycle 0 Early Science observing completed Dec 2012
- Cycle I Early Science observing begins Jan 2013 and extends for 10 months

ALMA Cycle | Early Science

- Total time for Cycle I Early Science observations ~ 800 hours
- 196 highest-priority Cycle 1 projects selected
- Antennas
 - 32 x 12m antennas for main array
 - 9 x 7m antennas for Atacama Compact Array (ACA, only with use of main array)
 - 2 x 12m antennas for Total Power Array (spectral line data only)
- Configurations
 - Main array: 6 configurations, max baselines 160m 1 km, 15m min baseline
 - ACA: I config, baselines 8.9 32.1m
- Mixed correlator modes, i.e., low and high resolution
- I 50 pointing mosaics
- Target of Opportunity observing/ Director's Discretionary Time observing
- Time critical observations, with scheduling sharpness of ~3 weeks
- Combination of main array, Atacama Compact Array, and total power data

Atacama Large Millimeter/submm Array

- Recent First Year of ALMA Science conference demonstrated ALMA's broad & significant science impact to almost every field of modern astrophysics
- 193 attendees from around the world
- http://www.almasc.org/2012/

NRA(

Gas Flows through a Protoplanetary Disk Gap

- HD142527: IR data shows 10 AU inner disk, 140 AU gap, disrupted outer disk 140+ AU
 - Disruption attributed to unseen planetary mass body(s) at ~ 90 AU
- ALMA sensitivity and spatial resolution enabled images of dense gas in gap-crossing filaments, along with diffuse CO gas within gap.
 - Observation explains how the observed high accretion rate may be maintained
 - Dynamical models suggested outer disk gas could be channeled by putative protoplanets through gap-crossing bridges feeding the inner disk: these observations support these models

Very Large Array

- Expanded Very Array construction project completed on schedule, on budget, and delivering per its scientific specs
- Enabling new science: full science operations initiated Jan 2013
- Very Large Array is a new instrument: 10 100X more capable

Molecular Gas in Forming Massive Galaxies

- Ivison et al imaged CO emission from two z=3 radio galaxies using VLA & PdBI
- Results indicate extreme, dense starbursts in complex, merging gas rich galaxies
- Show evidence for AGN feedback on the molecular gas through enhanced turbulence and high CO excitation

Very Long Baseline Array

- Ten 25m diameter radio telescopes on interferometric baselines to 8,600 km
- Highest resolution imaging telescope: sub-milliarcsecond resolution
- Highest precision astrometric telescope: 10 µ-arcsec
- Key Science Project emphasis

NRAC

Sensitivity Enhancement Project well
 underway

Transitional pulsar characteristics accurately measured with the VLBA

- Deller et al: a direct parallactic distance to transitional ms pulsar J1023+0038
- In crucial, short-lived evolutionary phase of mass transfer that leads to high neutron star spin-up to a ms pulsar
- Parallax (0.731 ± 0.022 mas), proper motion (17.98 ± 0.05 mas/yr), & previous optical obs yield
 - 1368 pc distance
 - neutron star mass of I.7IM_o
 - 3D space velocity of 126 km/s.

Green Bank Telescope

- Largest fully-steerable radio telescope
- Sensitivity & frequency coverage enable a wide-range of science
- State-of-the-art detector suite for spectroscopy, pulsar observations, continuum, Very Long Baseline Interferometry
- Focal Plane Array development program increasing observing efficiency

HI intensity mapping with the GBT

- Masui et al (2012) present HI intensity mapping over 41 deg. sq. in the WiggleZ Dark Energy Survey area at 0.6 < z < 1
- Measures integrated HI surface brightness: 1000s of galaxies & large cosmic volumes
- Cross-correlation with smoothed optical spectroscopic data shows a clear correlation, indicating HI signal on deg-scales
- HI intensity consistent with optical quasar absorption line measurements for the evolution of the cosmic HI mass density

Cross power spectrum with optical redshift survey

Semester 2013B Call for Proposals

- NRAO Call for Proposals for Semester 2013B published Thursday, 3 January 2013
- Observing proposals due Friday, Ist February 2013, 5 p.m. EST
 - Very Large Array
 - Very Long Baseline Array High Sensitivity Array global Very Long Baseline Interferometry
 - Green Bank Telescope
 - Applies to requests for time from 1 August 2013 31 January 2014
 - https://science.nrao.edu/enews/6.1

Observatory Challenges

- NRAO budget evolving rapidly transition from two construction projects to Operations... difficult staff, responsibility transitions
- US science NSF NSF/AST facing considerable uncertainty, downward pressure. Planning processes underway (e.g. Portfolio Review).
- Science community: new instruments, new user science requirements and expectations, new modes of research rapidly driving our business.
 - Data volumes, science-ready data, VAO, service & dynamic observing,
- Response
 - Internal: updating Observatory structure, function
 - Funding: working closely with NSF, seeking partnerships, opportunities
 - SciCom: interact with users, committees/WGs. Send us email.
- Commitment to the mission and our community remains strong.

NSF Portfolio Review Impacts

- NSF-AST Portfolio Review Committee recommended divesture of GBT and VLBA by FY 2017
- If implemented by NSF-AST, these recommendations will have major impacts on the US astronomy community
 - Critical & irreplaceable scientific capabilities would be surrendered
 - Community's ability to train young scientists & engineers would be greatly reduced
 - Research programs that address high priority science themes would be prematurely terminated; radio wavelength access for US faculty & students would be significantly reduced. Over-subscription rates would increase at remaining facilities.
 - US leadership in radio astronomy would be diminished
- Core issue is: AST funding @ NSF. Signal: 3.5%. Error: 0.7%
- Need: advocacy, outreach, participation. Issue: US Science funding.
 Issue: facilities vs. grants at NSF. Issue: <u>Coordinate, speak, act</u>.

Community Support

NRAO CASA Tutorial

- Wednesday, 9 January 2013: 2:00-3:30 pm, Room 103B
- software processing overview for novice VLA and ALMA users
- ALMA Data Reduction Tutorial
 - 28 February I March 2013: NRAO-Charlottesville, VA
 - overview of ALMA data reduction for Cycle 0 & I proposers

3rd VLA Data Reduction Workshop

- 8-12 April 2013: NRAO-Socorro, NM
- Assist observers with the challenges posed by the vastly increased flexibility and complexity of the VLA

Software Applications

Community Support

- Transformational Science with ALMA: From Dust to Rocks to Planets
 - 8 12 April 2013: Kona, Hawaii
 - Explore protostellar disk evolution from formation to dissipation
- Radio Astronomy in the LSST Era
 - 6 8 May 2013: NRAO Charlottesville, VA
 - Explore the landscape of radio wavelength observations in LSST era

NAIC-NRAO Single Dish Summer School

- 10-17 July 2013
- Arecibo Observatory, Puerto Rico
- Provide knowledge & practical experience in single dish radio astronomy

Community Support

- Jansky Postdoctoral Fellowships
- Student Programs
 - 25-30 undergrad/grad students each summer
- Undergrad/Grad internship & Co-op programs
 - Support science & engineering research programs
- Student Observing Support
 - Financial support of up to \$35K/investigator/year
- Grote Reber Doctoral Fellowship Program
 - Resident dissertation research with NRAO staff
- Visitor Program

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

www.nrao.edu • science.nrao.edu

