
Next Generation Radio Astronomy Receiver Systems 
 

Astro2010 Technology Development White Paper 
 

 

Principle Author: Matthew A. Morgan 

National Radio Astronomy Observatory 

434-296-0217 

matt.morgan@nrao.edu 

 

 

Co-author: J. Richard Fisher, NRAO 

 

Abstract 
 

Ground-breaking radio astronomy observations in the coming decade will require unprecedented 

levels of sensitivity while mapping large regions of space with much greater efficiency than is 

achieved with current telescopes.  This requires new instrumentation with the greatest achievable 

sensitivity, dynamic range, and field of view.  Receiver noise is quickly approaching 

fundamental limits at most radio wavelengths, so significant gains in sensitivity can only be 

made by increasing collecting area.  Mapping efficiency requires radio telescopes with wider 

fields of view.  Jointly, these requirements suggest using large arrays of smaller antennas, or 

many moderate-size antennas equipped with multi-beam arrays. 

 

The engineering community is thus challenged to develop receivers and wide bandwidth data 

transport systems which are lower cost, more compact, more reliable, lower weight, more 

reproducible, and more stable than the best current systems, with no compromise to performance.   

 

This can be achieved with a greater degree of component integration, extensive use of digital 

signal processing and transport, and replacement of functions currently performed in expensive 

and bulky waveguide and coaxial cable components with digital arithmetic and thin optical 

fibers.  There are no miracles to be pulled from the technological hat.  All of this is to be 

performed with careful attention to detail and adoption of the latest products from the consumer 

and industrial electronics industry. 

 

In this white paper, we outline the complete redesign and re-optimization of receiver architecture 

to take advantage of the latest advancements in commercial technology.  As well as transferring 

certain critical functions from the analog domain into the digital domain, this inevitably involves 

the seamless integration of the conversions from RF to baseband, from analog to digital, and 

from copper to fiber within a single receiver module.  The result is a well-optimized modern 

receiver architecture that is compact, inexpensive, reliable, and mass producible without 

compromising performance or versatility in any way. 



Science Drivers 
 

Science enabled by greater sensitivity and field of view includes pulsar surveys of the entire 

volume of our own Galaxy, wide-field maps of dust and many molecular species in star-forming 

regions, searches for transient sources on time scales from milliseconds to years, and a full-sky 

survey of emission from neutral hydrogen in galaxies out to redshifts approaching z = 1 to 

determine the fundamental structure and evolution of the universe. 

 

Radio astronomy has made enormous strides in sensitivity and observing efficiency in its seventy 

year history, but we still observe only a tiny fraction of the sky at a limited range of frequencies 

at any one time.  As collecting areas grow and sensitivities increase with better receivers and 

greater signal processing bandwidths the radio sky becomes less empty.  Results from recent all-

sky surveys at Parkes, Arecibo, and the VLA have shown that not only do they enhance the 

statistics on known objects, but new types of objects, such as pulsar-pulsar binary stars and 

extremely powerful transient sources in the distant universe, wait to be discovered.  Searches for 

and discovery of new millisecond pulsars will provide more probes of the nanohertz spectrum of 

gravitational waves. 

 

Multi-beam and wide-field radio telescopes will enhance the accuracy of very long baseline 

interferometric astrometry by providing simultaneous measurements of target objects and nearby 

phase calibrators.  VLBI astrometry is pushing trigonometric parallax measurements into the 

depths of our Galaxy and eventually beyond, observing classes of objects that are invisible to 

optical astrometry instruments. 

 

Achieving greater sensitivity and observing efficiency with more collecting area and greater 

fields of view is not enough.  To access the science, radio astronomers of the next decade must 

have even tighter control of the weak systematic errors of their instruments and the ability to 

accurately correct for them.  The calibration and stability of the system is therefore critical. 

 

Among the most challenging heterodyne receiver applications are large format focal plane arrays 

where it is desirable to pack the receiving antenna elements as close together as is physically and 

electromagnetically possible.  For example, a feed-horn array for 100 GHz (λ = 3 mm) on the 

Green Bank Telescope (GBT) with secondary focus F/D = 2 would have the horns spaced about 

2.3 cm center-to-center in a hexagonal pattern.  Each receiver element would need to fit in a 2.3-

cm diameter cylinder behind the horn.  In a prime focus “beam-forming” (phased) array at 10 

GHz (λ = 3 cm) the array elements would be approximately 2 cm apart.  Both of these 

applications are beyond the current state of the receiver art, but they are well defined targets for 

research and development in the coming decade. 

Complete Redesign, One Function at a Time 
 

In this white paper we define a radio astronomy receiver system to include all components from 

the point where an electromagnetic signal is confined to a waveguide or transmission line to the 

point where it is delivered to the input of a signal processor for correlation with other signals or 

for the extraction of intensity information as a function of time and frequency. 



 

The stability and accuracy of digital signal representation has been recognized since the demise 

of the analog computer more than 50 years ago.  Radio astronomy has been slow to take full 

advantage of this accuracy because its information bandwidths have generally been wider than 

the computation rate of digital hardware.  Extreme approximations, such as one- or two-bit 

correlators have been feasible for about 40 years because of the weak noise-like character of 

celestial signals, but the full potential of multi-bit signal processing at bandwidths greater than a 

few tens of megahertz has been affordable only in the last ten or fifteen years.  Analog to digital 

converters (ADCs) with 8-bit (256-level) signal representation are now available up to at least 10 

giga-samples per second (GSa/s) with 1 GSa/s devices costing less than $100. 

 

The first goal is to digitally sample the radio frequency (RF) signal as close to the antenna 

connection or focal point as possible.  This reduces the total analog path length and amplifier 

gain required along with their associated temperature-dependant amplitude and phase 

fluctuations.  Analog signal conditioning is still required to amplify the signal to the level 

required by the ADC and to limit the signal bandwidth to less than half of the digital sample rate 

to avoid sample aliasing. 

 

The rms noise voltage at the input of a cryogenic receiver with a system temperature of 20 

Kelvin and a bandwidth of 100 MHz is about 1 microvolt, whereas the ADC input signal level 

must be about 10 millivolts, so about 80 dB of net analog gain is required.  Typical current 

receivers have 120 dB or more total gain to overcome multiple conversion, filter, and 

transmission line losses.  A simplified receiver system will be more stable in at least two ways: 

less total gain and a much shorter signal path between the antenna terminals and the digitizer. 

 

Direct digitization of the RF signal without analog frequency conversion is a possible strategy, 

particularly at low to modest frequencies, but frequency tuning flexibility, strong signal 

rejection, and low power consumption often makes analog conversion to a lower frequency band 

before digitization more attractive.  It also allows the approximately 80 dB of gain to be divided 

between input and baseband frequency bands.  Ensuring stability of 80 dB of gain at one 

frequency in a small space is a design problem one would prefer to avoid. 

 

Most current centimeter-wave receivers employ several frequency conversion stages to allow 

wide tuning ranges with good image rejection, but each conversion stage adds spurious mixing 

products that can be quite troublesome.  Limiting the analog portion of the receiver to one 

frequency conversion will produce a cleaner signal, and this is now feasible with digital signal 

processing to maintain excellent rejection of out-of-band signals.  We briefly describe this 

strategy later in this white paper. 

 

Immediate modulation of the digital data stream onto an optical fiber allows it to be transported 

away from the part of the antenna where space, power, and weight carrying capacity are at a 

premium.  Optical fibers are small, light, and relatively insensitive to environmental conditions.  

Their bandwidth is limited only by the laser transmitters and diode receivers on either end. 

 

Essentially all of the digital signal processing and data transport hardware components needed in 

radio astronomy applications is available from industry at continuously decreasing cost per unit 



bandwidth.  However, many of the sophisticated packetizing, routing, and error-correction 

schemes needed for robust long-distance data transmission are not necessarily needed in the tens 

to thousands of meters distance from the antenna feed to the data processing components.  The 

engineer’s task, which is quite substantial, is to develop and implement algorithms that take 

advantage of the known statistical characteristics of radio astronomy signals to maximize the 

data throughput for a given volume, power, and weight, particularly on the transmit end of the 

fiber. 

Current State of the Art 
 

The best-performing microwave and millimeter-wave heterodyne receivers in use today 

generally consist of large assemblies of discrete connectorized parts.  A good example of one 

such receiver is the Q-Band 4-Beam Receiver on the Green Bank Telescope (Figure 1).  

Although providing unsurpassed performance, receivers such as these are clearly too bulky to be 

used in tightly-packed focal plane arrays, or possibly even by themselves on small dishes. 

 

Possibly the most densely packed heterodyne receiver array constructed to date is the SEQUOIA 

system built at the University of Massachusetts for the Five College Radio Astronomy 

Observatory.  This is a 16-pixel array with an input frequency range of 85-115 GHz and 16 

analog output signals in the 5-20 GHz band.  Two, single-polarization, 16-horn arrays with a 

wire grid and mirror were combined to receive both orthogonal polarizations.  This array used 

MMIC amplifier technology, but most of the analog receiver components were located away 

from the telescope focus.  This array receiver performed extremely well, but expansion to more 

than 16 pixels proved problematic
1
. 

 

More recently, a 60-pixel, dual-polarization horn array for 18-26 GHz has been proposed, and a 

7-pixel prototype for this array is now under construction at the National Radio Astronomy 

Observatory.  It uses connectorized components carefully arranged to fit behind the shadow of a 

compact corrugated feedhorn, thus permitting them to be used in a tightly packed focal plane 

array without resorting to any additional integration of components, as shown in Figure 2.  

Unfortunately, while the receiver dimensions have been greatly reduced laterally, they have also 

grown vertically.  Size and mass therefore remain a critical issue for arrays such as this. 

Beyond the State of the Art 
 

We believe the key to more effectively miniaturizing high-performance radio astronomy 

instruments is to transfer as many of the receiver functions as possible from the analog to digital 

signal domain.  This is even true in the cryogenic front-end ahead of the first low-noise 

amplifier.  For example, two independent, orthogonal polarizations from the sky are typically 

converted from degenerate modes in a dual-mode waveguide at one impedance to independent 

coaxial cable or rectangular waveguide modes at a different impedance.  These mode and 

impedance transformations require minimum physical dimensions, set by fundamental physics.  

Wider bandwidths and tighter performance tolerances require even larger dimensions.  By using 

                                                 
1
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four coaxial probes into the waveguide in a symmetric configuration, as shown in Figure 3a, and 

combining signals from opposing probes in digital arithmetic the size of the orthomode 

transducer (OMT) can be reduced and the isolation of the two polarizations can be greatly 

improved with calibrated signal combining coefficients.  The penalty is the need for four low-

noise amplifiers instead of two, but these are physically small.  A more radical idea is to use only 

three probes and amplifiers, as shown in Figure 3b.  The signal combing arithmetic is less 

intuitive, but it is essentially free.  The analog equivalent of the three-probe OMT has never been 

tried, to our knowledge. 

 

The waveguide device for converting from intrinsic linear to circular polarization (usually a 

phase-shifter preceding the OMT) can be eliminated entirely and its function done more 

accurately digitally.  The final result is a dramatic reduction in the cold mass of a radio 

astronomy receiver.  The short electrical length between the probes and the amplifiers may even 

eliminate the need for RF isolators.  With precise calibration, polarization isolation in excess of 

40 dB should be achievable, with no compromise in front-end bandwidth or sensitivity.  High 

performance waveguide OMTs and polarizers typically provide isolations on the order of 20 to 

25 dB.  The reflector antenna to which the receiver is attached adds its own polarization 

signature, which could be included in the OMT signal processing, but this may remain as part of 

astronomical calibration and image processing algorithms.  With better OMT and polarizer the 

image processing correction terms will be smaller. 

 

Another area in which digital signal processing can help is frequency downconversion.  Most 

heterodyne radio astronomy receivers incorporate at least two, often more, frequency conversion 

(mixing) stages to provide adequate frequency selectivity while tuning over broad bandwidths.  

Not only is this complex, but the use of multiple independent local oscillators (LO) opens the 

door for spurious mixing products to leak into the signal path.  A better solution is to use a 

sideband-separating mixer to go from RF to a near-zero intermediate frequency (baseband IF) in 

one step.  Once again, traditional analog components prove to be the limiting factor.  A 

sideband-separating mixer requires a phase-quadrature power division of the LO signal and a 

broadband phase-quadrature combiner at IF.  The net phase- and magnitude-imbalance of these 

power dividers and combiners typically limit sideband isolation to 20 dB or less, worse if the 

receiver must tune over a wide frequency range.  This type of mixer is common at millimeter 

wavelengths, bit poor sideband separation has ruled out its use for in applications where radio 

frequency interference (RFI) is a problem. 

 

The solution is to move the IF signal combiner of a sideband-separating mixer into the digital 

domain.  Thus, the I and Q output signals of the mixer pair, shown in Figure 4, are digitized 

separately and then recombined using calibrated weighting coefficients.  As with the OMT, the 

weighting coefficients can be optimized, not only to implement a mathematically perfect IF 

hybrid, but to compensate for phase and amplitude errors in the analog components.  Again, the 

ultimate performance depends only on the resolution of the signal processing arithmetic and the 

stability of the analog hardware.  We have demonstrated sideband isolation in excess of 50 dB in 

prototype mixers. 

 

This approach does not require a larger number of mixers or increase the digital bit-rate into the 

backend for a given total IF bandwidth.  It merely replaces two different mixers in a super-



heterodyne scheme with two identical ones, and splits one analog to digital convertor (ADC) into 

two ADC's with half the sample rate.  Although the number of digital channels has been doubled, 

the total digital signal bandwidth is exactly the same.   

Streamlining the Transition to Fiber 
 

As has already been stated, the limiting performance of the digital-enhancement techniques 

described above depends in large part on the stability of the analog portion of the front-end.  

Component integration and elimination of connectors are well-proven strategies for ensuring that 

stability, in addition to the obvious size and weight advantages.  It is our goal to integrate the 

conversions from analog to digital and from copper to fiber in a single compact package attached 

to the output of the cryogenic part of the front-end. 

 

Doing so obviously requires overcoming some challenges.  First, the samplers must be extremely 

well isolated from the analog components in order to avoid self-interference from high-speed 

digital signal transients.  Traditional "conservative" techniques for doing this, by putting the 

digital portion in a physically-separated, shielded enclosure, are usually quite bulky and 

inefficient.  However, this need not be the case.  In principle, all that is required to isolate signals 

in two separate cavities is a metal partition which is only a few RF skin depths thick.  There is no 

reason the analog and digital cavities could not be located very close to one another, and even cut 

out of the same metal housing. 

 

To save space and power dissipation in the receiver package the digitized signal bits should be 

placed on an optical fiber with as little processing as is consistent with a robust data link.  The 

thin fiber(s) will then transport the signals away from the antenna to a central processing facility 

that will house the bulky and power-hungry digital signal processing (DSP) hardware.  Most of 

the burden of managing the communication across the link should be placed at the receiving end 

of the fiber, in the central DSP facility.  This distinguishes our application from most commercial 

fiber optic solutions, where a great deal of encoding, formatting, and framing is done at the 

transmit end. 

 

The very nature of astronomical data may be useful in simplifying the transmit side.  For 

example, a general-purpose data link cannot make any assumptions about data content and must 

allow for cases where a long string of data bits could be all zeros or ones.  All commonly 

deployed serial data links use the data itself to recover the data “clock” that marks the transitions 

between consecutive bits.  If there are no data transitions for long periods, the recovered clock 

loses synchronization.  To avoid this, the data are scrambled at the transmit end with a known 

algorithm to assure transitions and descrambled at the receive end with the reverse algorithm.  

However, in contrast to conventional data streams, digitally sampled astronomical receiver 

signals constitute nearly Gaussian-distributed noise.  Clock/Data Recovery (CDR) circuits with 

Consecutive Identical Digit (CID) ratings of greater than 2000 bits are readily available, and the 

likelihood of an astronomical data stream comprising 2000 identical digits is infinitesimally 

small. 

 

General purpose serial data links must also be able to detect message boundaries, work with any 

length of cable, and survive adaptive routing from computer to computer that may or may not 



preserve the original packet order.  Radio astronomy data links are generally fixed and the data 

stream contiguous with slowly changing statistics.  Data word boundaries can be detected at the 

receiving end by looking at bit statistics.  The most significant bits will look very different from 

the least significant bits of the neighboring word.  If two correlated data streams are mistakenly 

offset by one or more words, this will be seen as quantized phase and delay offsets in their 

correlation products.  The only requirements are that these offsets be initially determined and 

that slow changes in cable lengths tracked in real time with signal processing on the receive end 

of the data links.  The current state of the art for data links in radio astronomy is the system used 

in ALMA and EVLA.  These use modified versions of the formatting and clock recovery 

techniques mentioned above for extremely robust link performance, and much is to be learned 

from that experience.  However, we believe there is much to be gained with research into low-

overhead, point-to-point digital data transfer strategies. 

Final Technology Goals and Development Milestones 
 

The various enhancements and simplifications described above go hand-in-hand toward realizing 

a well-optimized modern receiver architecture that is compact, inexpensive, reliable, and mass 

producible without comprising performance or versatility in any significant way.  The following 

list of milestones is a step-by-step development program toward achieving the final goals. 

 

1. Digital Sideband Separating Mixer (DSSM) -- This initial proof of concept has been 

achieved in the form of an L-Band (1200-1700 MHz) downconverter with 500 MHz total 

IF Bandwidth, the digital recombination performed in software as post-processing.  The 

results are shown in Figure 5. 

2. DSSM With Integrated ADCs -- This milestone will demonstrate the compact integration 

of high-gain analog and high-speed digital components in a common housing with 

sufficient isolation to avoid self-interference. 

3. Digital Ortho-Mode Transducer (DOMT) -- This will be the initial proof of concept for 

digital polarization isolation.  Prototypes will be developed at X-Band using both the 

three- and four-probe configurations.  As with the above milestones, digital signal 

recombination will be performed in post-processing at this stage. 

4. Minimal-Overhead Radio Astronomy Photonic Link -- This will demonstrate wide 

bandwidth transport of data over an optical fiber with a minimum of overhead for 

formatting and packet-framing functions at the transmit end.  A very simple block 

diagram of what the link may look like is shown in Figure 6. 

5. RF-Input/Fiber-Output Warm Receiver -- This will involve marrying the above concepts 

into a single module that encapsulates the conversion from RF to baseband, from analog 

to digital, and from copper to fiber within a shared compact housing. 

6. Real-Time Signal Recombination -- The signal recombination arithmetic will be 

programmed into an FPGA, allowing for the first time the digital sideband separation and 

polarization isolation to be performed not in post-processing, but in real-time. 

7. Complete Next-Generation Receiver at X-Band -- A complete X-Band receiver will be 

tested on the Green Bank Telescope (GBT), including a cryogenic front-end module with 

either a three-probe or four-probe OMT, an RF-input/fiber-output warm receiver module, 

a minimal-overhead photonic link, and real-time signal recombination hardware feeding 

into the backend spectrometer. 



8. Next-Generation FPA at W-Band -- Two or more complete next-generation receivers will 

be constructed as above, this time at W-Band, and tested as a small prototype focal plane-

array with approximately 2.3cm spacing. 

9. Beam-Forming Array Prototype at X-Band -- The X-Band next-generation receivers will 

be replicated, with a modified DOMT configured to mate with crossed-dipoles instead of 

a feed horn, and tested as a beam-forming array with approximately 2cm spacing.  In 

addition to proving an unprecedented level of miniaturization at X-Band, it will also test 

relative receiver chain stability between channels. 

10. Ultra-Wideband Next-Generation Receivers -- As higher-speed ADCs, FPGAs, and 

Optoelectronic components become available, subsequent generations of the receivers 

described in this white paper will be constructed with increasing instantaneous IF 

bandwidths. 



  
 

 FIGURE 1. Q-BAND RECEIVER ON THE GREEN BANK TELESCOPE. 

 

 
 

FIGURE 2. DRAWING OF THE SEVEN BEAM K-BAND FOCAL PLANE ARRAY FOR THE GBT. 
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FIGURE 3.ANALOG PORTION OF A DIGITALLY-ENHANCED OMT.  THE OUTPUTS ARE PROCESSED 

INDEPENTLY AND THEN MATHEMTICALLY RECOMBINED IN THE DIGITAL BACKEND. 

 

 

 

 

  
 
FIGURE 4. ANALOG PORTION OF A DIGITALLY-ENHANCED SIDEBAND-SEPARATING MIXER.  THE 

OUTPUTS ARE PROCESSED INDEPENDENTLY AND THEN MATHEMATICALLY RECOMBINED IN THE 

DIGITAL BACKEND. 

 



 
 
FIGURE 5. TYPICAL SIDEBAND-SEPARATION MEASUREMENT USING L-BAND PROTOTYPE.  GAIN 

OFFSET ADDED FOR CLARITY. 

 

 

 

 
 
FIGURE 6. DIAGRAM OF A MINIMAL PHOTONIC LINK FOR RADIO ASTRONOMY RECEIVERS. 

 


