

LOFAR & PanSTARRS: Transient Searches in Different Frequency Domains

Dario Carbone

LOFAR: A. van der Horst, A. Stewart, R. Wijers, R. Fender PanSTARRS: J. Tonry, S. Smartt

Outline

- Science case for transient searches
- Introduction to LOFAR
- Observations
- Analysis techniques
- Future developments

What transients can we expect?

AGN (Zauderer et al. 2011)

NS & BH (Fender et al. 2004) Novae (Kording et al. 2008)

Magnetar (Gaensler et al. 2005) SNe (Galama et al. 1998)

GRB (Kulkarni et al. 1998)

What transients can we expect?

Magnetar (Gaensler et al. 2005) SNe (Galama et al. 1998)

GRB (Kulkarni et al. 1998)

Low Frequency Array

- International collaboration, lead by the Netherlands
- Baselines up to 2000 km (sub arcsec resolution)
- Dutch baselines:
 ~ 10 arcsec resolution

LOFAR

Low Band Antenna 30-80 MHz

High Band Antenna 120-240 MHz

48 stations of dipoles in the Netherlands & in Europe (one station = hundreds of dipoles)

LOFAR Superterp

Sensitivity of 40 mJy/beam in 11 minutes (HBA)

Multiple LOFAR beams

- Aperture array
- Wide field of view
- Digital beamforming multiple beams (up to 130)

PanSTARRS

- The Panoramic Survey Telescope And Rapid Response System
- 1.8 m telescope on Hawaii
- Survey the entire visible sky in five filters (g, r, i, z, y)
- FOV ~ 9 deg²

Optical Images

Credits: J. Tonry & S. Smartt

LOFAR Observations

- Observing MD03 and MD05 once every 2 weeks since March 2nd (except March 17th)
- 2 hours 8 snapshots of 11 minutes
- 6 HBA bands (117 156 MHz)
- 2 beams (1 for each field)
- 3C196 as calibrator

Snapshot image of MD03

- 11 minute observation
- Full bandwidth
- Inner 6 km of array
- rms noise = 13 mJy/beam
- ~ 250 sources detected

Comparing FOVs

TraP

Credits: J. Swinbank

Light Curves

LOFAR: a Pathfinder for SKA

- Split between South Africa and Australia
- Sensitivity 1 μ Jy (5 σ) in 10 hours
- Spatial Resolution < 1 mas

Low Band Antenna: 70 - 300 MHz

High Band Dishes: 300 MHz - 10 GHz

Conclusions

• LOFAR is starting to collect a lot of data for transient searches at low radio frequency.

- LOFAR PanSTARRS project:
 - searching for transients in optical and radio
 - LOFAR observations of Medium Deep Fields
 - transient searches on different timescales, from tens of minutes to weeks

Transients rate

Credits: J. Broderick