Radio Cosmology in the era of LSST Tzu-Ching Chang (ASIAA)

Cosmology

- Cosmological parameters & large-scale structure surveys
- Reionization probes
- Two fun sciences/experiments with radio cosmology

Cosmology post Planck

- Is it still interesting? Do we need even smaller error bars?
- Not end of story we still don't know the initial conditions, dark matter, and dark energy.
- Need to nail parameters with LSS surveys
 - Dark energy (for wCDM, best probe at z<2).</p>
 - Curvature (LSS geometry probes): dOmega_k < 10⁻³?
 - Sum of neutrino mass (damping of p(k)): dE < 0.01eV</p>
 - Non-gaussianity (scale-dependent bias): dfnl < 1?</p>

Large-scale structure probes

- Besides (next generation) CMB polarization, actions are here.
- CMB: ~2D information, mode $\# \propto (I_max)^2$
- LSS redshift surveys: 3D information, mode $\# \propto (k_max)^3$
 - shot noise dominates p(k) at high wavenumber k
 - shot noise ~ 1/n_gal
 - $n_{gal} = 10^{-4} h^3 Mpc^{-3}$ (SDSS, WiggleZ)
 - n_gal = (3-5) x 10⁻⁴ h³ Mpc⁻³ (BOSS, HETDEX, HSC, PFS)
 - $n_{gal} = 10^{-3} h^{3} Mpc^{-3}$ (Euclid, LSST)

What can (low-freq) radio do?

- Emission v.s. absorption (21-cm forest; difficult)
- Continuum emissions (see Matt Jarvis' talk)
 - "thresholded": radio continuum sources (e.g., FIRST, NVSS, EMU, LADUMA surveys. Owen & Morrison 08, Condon+ 12)
 - "non-thresholded": radio background intensity and fluctuations (e.g. ARCADE-2, Fixsen+ 09)
- Line emissions (in particular, HI 21cm)
 - "thresholded": "SKA: billions of HI galaxies at z>1" (e.g., Verheijen+ 10, Fernandez+ 13). MeerkAT and ASKAP surveys. Gas and galaxy evolution.
 - "non-thresholded": 21cm Intensity Mapping (e.g., Chang+ 08, 10, Masui+ 13, Switzer+ 13) for LSS; Reionization probes.

21cm Intensity Mapping

- Measure HI associated with large-scale structure instead of with galaxies (Wyithe & Loeb 08, Chang+08, Seo+10).
- CMB-like, but measure 3D temperature fluctuations.
- Low angular resolution, high spectral/redshift resolution tangential to photometric redshift surveys.
- Provides a broad redshift window (0< z < 25) and offers an economical way for a powerful LSS survey.</p>
- Confusion limited. Observational challenges: Foreground/ signal > 10³. RFI.
- Initial results are promising (Chang+10, Masui+13, Switzer+13) but needs to be further verified.

21cm Intensity Mapping

• Current limits on 21cm auto power spectrum and measurements on $\Omega_{HI}b_{HI}$ at z=0.8 using the GBT.

21cm Intensity Mapping current/future telescopes

CHIME/Tian-Lai/CRT/BAORadio

GBT-HIM multibeam

BAOBAB

FFT/OMNISCOPE Telescope

Wednesday, May 8, 2013

21cm Intensity Mapping

Forecasts on Baryon Acoustic Oscillation (BAO) distance scale.

Radio-Optical synergy

- Cross-correlating radio continuum sources and LSST samples to obtain redshift distribution of radio sources (e.g., Menard+ 13, Sam Lindsay's talk).
 - With dn/dz, besides galaxy-galaxy, galaxy-shear, shear-shear, and cosmic shear measurements (Minh Huynh's talk), one can do magnification lensing using radio continuum sources.
- Cross-correlating galaxy-scale 21cm emissions with LSST sample to help sharpen the photo-z accuracy.
- Cross-correlating 21cm intensity maps with LSST samples (accurate redshift info v.s. accurate angular info) to extract more info? See talk by Albert Stebbins.
- Cross-correlating for BAO and RSD measurements using multitracer (McDonald & Seljek 08), eliminating cosmic variance.

Reionization probes

Pritchard & Loeb (2010)

Reionization probes

Pritchard & Loeb (2010)

Reionization p(k) current limits

GMRT: <256 mK at z=8.6
Paciga, .. Chang+ 13

PAPER: <52mK at z=7.7 Parsons+ 13

MWA: <300mK at z=9.5
Dillon+ 13

Radio-optical/IR synergy

- LSST can find many high-z sources to be followed up by JWST.
 - with dropout techniques
 - with galaxy clusters as lenses
- Luminosity function (z), accounting for ionizing photons.

Radio-optical synergy

Lidz, Furlanetto, Oh, Aguirre, Chang, Dore, Pritchard 201 I

- HI-Co anti-correlates on large-scales, constraining size evolution of ionized regions at EoR (Lidz et al. 2009)
- CO Intensity Mapping may be a viable way of probing reionization (Gong+10, Carilli 10, Lidz+11)

Other experiments in radio cosmology

- Masers (H₂O maser at 22GHz)
 - Megamaser Cosmology Project for direct Ho measurements (Braatz, Henkel+12, Kuo+12, Reid+12).
- Strong gravitational lenses (ALMA lensing at 345GHz)
 - Sub-mm bright galaxies by Herschel/SPT tend to be strongly lensed (Vieira+ 13, Hezaveh+ 13a).
 - With velocity information, radio lenses are promising tools for halo substructure and small-scale matter power spectrum measurements with ALMA (Hezaveh+ 13b), which can't be done in the optical.

Cosmology

- Cosmological parameters & large-scale structure surveys
 - Intensity Mapping a promising approach for powerful and economical LSS probe
- Reionization probes
 - 21cm fluctuations probe reionization tomography at 6 < z < 20
 - 21cm global temperature probes IGM evolution at 6 < z < 27</p>
- Two fun sciences/experiments with radio cosmology