OVRO 40 meter telescope blazar monitoring program: Location of the gamma-ray emission region in blazars by the study of correlated variability at radio and gamma-ray

Walter Max-Moerbeck (NRAO) with the OVRO blazar monitoring group and the Fermi-LAT collaboration

May 6, 2013

- Radio loud
- Small angular size
- Superluminal expansion

Broadband spectral energy distribution 3C 279 from Hayashida et al. 2012

Variability 3C 279 from Hayashida et al. 2012

• 3

Models of blazars

Synchrotron emission for low energy peak

• High polarization

High energy peak

- o Inverse Compton
 - Synchrotron self Compton
 - External Compton
 - o Accretion disk, corona
 - Broad line region
 - o Dust torus

Location of the gammaray emission region

The location is uncertain, but there are two main models

Observational constraints

- Direct imaging is not possible
 - VLBI observations have submilliarcsecond resolution
 - Gamma-ray telescopes have ~0.3° at E > 10 GeV
- One alternative is to use the variability
- Correlated variations expected if the emission regions are related
- This program requires simultaneous monitoring at different bands

The Fermi era

- Fermi monitors the sky continuously at high energies • Energies from 20 MeV to 300 GeV
- A full sky map every 3 hours

Outline

- OVRO 40 m telescope blazar monitoring program
- Cross-correlation significance
- Variability in the radio and gamma-ray band
- Cross-correlation, time lags and the location of the gamma-ray emission site

Radio monitoring program

- Monitoring 1593 blazars
 - Including all Fermi detected
- Radio continuum
 - o 15 GHz central frequency, 3 GHz bandwidth
 - 4 mJy thermal noise, ~3% typical uncertainty
- Two observation per week

The OVRO 40 m telescope at night by Joseph Richards

Distribution of monitored sources in equatorial coordinates

Radio light curves, 4 years of data Flux density calibrators

• 10

Radio light curves, 4 years of data Some blazars

• 11

Cross-correlation sample

- 86 brightest gamma-ray sources
- 75% of monthly detections in second LAT source catalog (Nolan et al. 2012)

 Table A.1: OVRO blazar monitoring program source in cross-correlation sample

OVRO name	Common name	2FGL name	RA	DEC	z	Optical Class	SED class
RBS76	KUV 00311-1938	J0033.5-1921	00:33:34.30	-19:21:34.0	0.61	BLL	HSP
J0108+0135	4C + 01.02	J0108.6+0135	01:08:38.77	+01:35:00.3	2.099	FSRQ	LSP
J0112+2244	S2 0109+22	J0112.1 + 2245	01:12:05.82	+22:44:38.8	0.265	BLL	ISP
J0112+3208	4C 31.03	J0112.8+3208	01:12:50.33	+32:08:17.6	0.603	FSRQ	LSP
BBJ0136+3905	B3 0133+388	J0136.5 + 3905	01:36:32.40	+39:05:59.0	0.0	BLL	HSP
J0136 + 4751	OC 457	J0136.9 + 4751	01:36:58.59	+47:51:29.1	0.859	FSRQ	LSP
C0144+2705	TXS 0141+268	J0144.6 + 2704	01:44:33.56	+27:05:03.1	0.0	BLL	LSP
J0217+0144	PKS 0215+015	J0217.9+0143	02:17:48.96	+01:44:49.7	1.721	FSRQ	LSP
J0221+3556	S4 0218+35	J0221.0 + 3555	02:21:05.47	+35:56:13.7	0.944	FSRQ	
3C66A	3C 66A	J0222.6 + 4302	02:22:39.60	+43:02:07.0	0.0	BLL	ISP
J0237 + 2848	4C + 28.07	J0237.8 + 2846	02:37:52.41	+28:48:09.0	1.206	FSRQ	LSP
J0238+1636	AO 0235+164	J0238.7+1637	02:38:38.93	+16:36:59.3	0.94	BLL	LSP
J0319+4130	NGC 1275	J0319.8+4130	03:19:48.16	+41:30:42.1	0.018	Radio Gal	
J0423-0120	PKS 0420-01	J0423.2-0120	04:23:15.80	-01:20:33.1	0.916	FSRQ	LSP
J0442-0017	PKS 0440-00	J0442.7-0017	04:42:38.66	-00:17:43.4	0.844	FSRQ	LSP
J0509 + 0541	TXS 0506+056	J0509.4 + 0542	05:09:25.96	+05:41:35.3	0.0	BLL	ISP
J0612+4122	B3 0609+413	J0612.8+4122	06:12:51.19	+41:22:37.4	0.0	BLL	
C0719+3307	B2 0716+33	J0719.3 + 3306	07:19:19.42	+33:07:09.7	0.779	FSRQ	LSP
J0721+7120	S5 0716+71	J0721.9+7120	07:21:53.45	+71:20:36.4	0.0	BLL	ISP
J0725 + 1425	4C +14.23	J0725.3+1426	07:25:16.81	+14:25:13.7	1.038	FSRQ	LSP

Sample of the table with source properties

¹²

Gamma-ray light curves

- Data from the Fermi Gamma-ray Space Telescope
- Energy from 100 MeV to 200 GeV
- 3 years of data with 7 day time bins

The estimation of the cross-correlation

- Cross-correlation for unevenly sampled data
 o Edelson and Krolik 1988, Welsh 1999
- This does not provide an estimate of the significance
- The significance is estimated using simulated data
 We need a model to simulate the light curves

The significance of the cross-correlation

- Flares are common in radio and gamma-rays
- One to one identification is challenging

The significance of the cross-correlation

- The appearance of flares depends on the characteristics of the signal
 - Modeled with simple power law power spectral density (PSD)

Simulated light curves with different PSD, 3 for each case

Model dependence of significance

The characterization of the variability

- Variability is characterized with the PSD
- Uneven sampling is a problem
- A method was developed based on Uttley et al. 2002
- The PSD is fitted to the mean PSD of simulated data sets

$$P(
u) \propto rac{1}{
u^eta}$$

- Same sampling and noise properties as data
- Requires interpolation and sampling window function to avoid biased estimate of β , in general $\beta_{\rm fit} < \beta_{\rm real}$

Correlations and timelags in OVRO sample

- 41 out 86 are variable in both bands and have no flags (noise and trends)
- 13 sources have fitted PSD in radio and gamma-rays
- These have the best significance constraints
- For the other sources we use mean population values in non-constrained band of

 β_{radio} = 2.3 and β_{gamma} = 1.6
- We set a significance limit of 97.56% (2.25 σ), for which one spurious case is expected

Sources with significant correlation

CCF

J0238+1636

AO 0235 + 164, $\tau = -30 \pm 9$ day $\tau = -150 \pm 8$ day

B2 2308 + 34, $\tau = -120 \pm 14$ day

PKS 1502 + 106, $\tau = -40 \pm 13$ day

Model for the correlation and time-lag

Estimation of jet properties from VLBI observations

Location of the gammaray emission region

Source	d	$d_{\rm core}({\rm coll})$	$d_{\rm core}({\rm cone})$	$d_{\gamma}(\text{coll})$	$d_{\gamma}(\text{cone})$
	[pc]	[pc]	[pc]	[pc]	[pc]
AO 0235+164, $\tau = -150 \pm 8$ day	37 ± 23	$\gtrsim 23 \pm 6$	$\gtrsim 40 \pm 11$	$\gtrsim -14 \pm 24$	$\gtrsim 3 \pm 25$
AO 0235+164, $\tau = -30 \pm 9$ day	8 ± 5	$\gtrsim 23 \pm 6$	$\gtrsim 40 \pm 11$	$\gtrsim 15 \pm 8$	$\gtrsim 32 \pm 12$
PKS 1502+106	2 ± 1	14 ± 9	24 ± 15	12 ± 9	22 ± 15

Summary

- Radio monitoring of 1593 blazars at 15 GHz
 - Large sample, continuously observed independent of gamma-ray state
- Statistical analysis
 - Variability characterization at 15 GHz for largest sample ever studied
 - Significance of cross-correlations based on measured variability properties
- 3 sources out of 41 show significant correlation
 - An additional object (Mrk 421) shows correlated variability when extended light curves are used
- In all significant cases:
 - Radio emission lags gamma-ray variations.
 - Indication that gamma-ray emission is produced upstream of radio
- In one case gamma-rays originate parsecs away from the central engine

Final comments

- Simultaneous programs with radio and LSST can play a significant role in the future
- Statistical techniques as the ones presented here are required to get the most out of these multiwavelength observations