SKA Science Data Processor

B. Nikolic & SKA SDP Consortium Team

Astrophysics Group, Cavendish Laboratory, University of Cambridge http://www.mrao.cam.ac.uk/~bn204/

> 7 May 2013 NRAO Charlottesville

SKA SDP

B. Nikolic / SDP Team

About the Square Kilometre Array

cience Data rocessor

rchitectures, echnologies

About the Square Kilometre Array

cience Data rocessor

Architectures, Technologies

- SKA "Science Data Processor"
 - ▶ What it is?
 - The computing and data challenge
- Architectures and approaches to solving this challenge
- ► Similarities cf LLST? Differences?

About the Square Kilometre Array

Processor

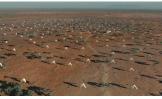
Technologie

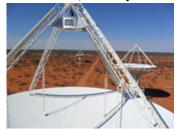
Summary

About the Square Kilometre Array

Science Data Processor

Architectures, Technologies

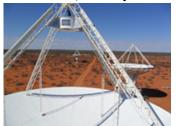

Architectures, Technologies


Summarv

SKA₁-Mid

SKA₁-Low

architectures echnologies


Summary

SKA₁-Low

SKA₁-Mid

SKA₁-Survey

HPC Computer

rchitectures echnologies

Summary

SKA₁-Mid

SKA₁-Survey

SKA₁-Low

HPC Computers

Technologie

Summary

Summary of planned features:

- ▶ 100× better sensitivity than current best telescopes
- $\blacktriangleright~10^6\times$ sky survey speed compared to current facilities
- ► Frequency coverage 50 MHz-~ 10 GHz
- Extremely radio quite sites
- Staged construction:
 - Precursors: ASKAP/MeerKAT under construction
 - ► SKA₁: Construction start in 2016-7. Full Ops 2020
 - SKA₂: Construction start in ~2023
- Will require 'exascale' computing to form images and analyse them

Karoo Desert, South Africa

Western Australia

About the Square Kilometre Array

Science Data Processor

rchitectures echnologies

Summary

Within the SKA project, Information and Communications Technology (ICT) is:

- Major part of the design budget
- Major part of the construction budget
- Major part of the operations budget (power, S/W maintenance)
- Major part of the risk 'budget'
 - Strong interaction with industry, other astronomy projects, other science project
 - Direct involvement of major existing HPC facilities
 - Reusing, Road-mapping, Best-practices, Sustainability

About the Square Kilometre Array

Science Data Processor

O

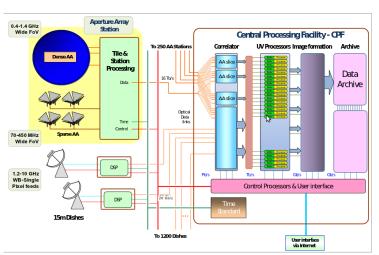
Summary

About the Square Kilometre Array

Science Data Processor

Architectures, Technologies

Wide area dataflow for SKA

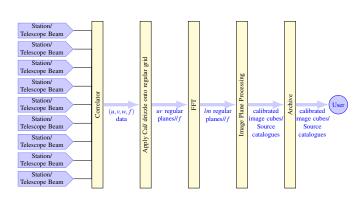

SKA SDP

B. Nikolic / SDP Team

Science Data Processor

Architectures, Technologies

SKA simplified dataflow


SKA SDP

B. Nikolic / SDP Team

About the Square Kilometre Array

Science Data Processor

Architectures Technologies

About the Square Kilometre Array

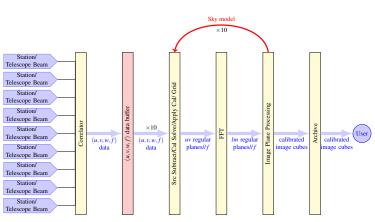
Science Data Processor

Architectures echnologies

ummary

Complex to do

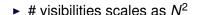
- Irregular 3d sampling of the signal
 - ⇒ grid & expensive 3d correction
- Image reconstruction (CLEANing)
 - ⇒ identify and remove 'bright' sources
- Changing electrical properties of telescope and the atmosphere
 - ⇒ self-calibrate

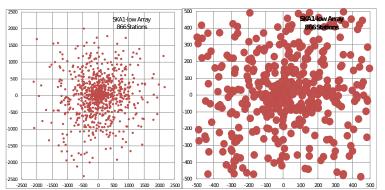

Computationally intensive

Very high data rates

About the Square Kilometre Array

Science Data Processor


Architectures Technologies


About the Square Kilometre Array

Science Data Processor

Architectures Technologies

- ► Very large *N*:
 - $N \sim 900$ for SKA₁-Low
 - $N \sim 250$ for SKA₂-Mid

SKA1-Low Core stations configuration. Credit: P. Dewney, SKA1 Baseline Design/RFP

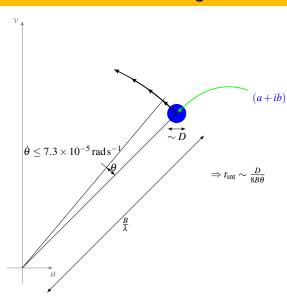
About the Square Kilometre Array

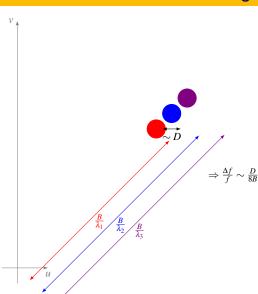
Science Data Processor

Architectures Technologies

- # visibilities scales as # beams
- ► SKA₁-Survey will have 36 simultaneous beams

Data Rate - time smearing




About the Square Kilometre Array

Science Data Processor

Architectures Technologies

Data Rate - bandwidth smearing

SKA SDP

B. Nikolic / SDP Team

About the Square Kilometre Array

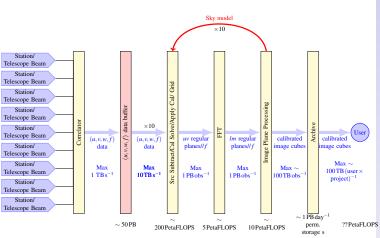
Science Data Processor

Architectures Technologies

Technologie

- ▶ Data volume most demanding for 'high resolution spectral line survey' observation:
 - Roughly 32k×32k×32k cube ⇒ ~ 200 TB/obs
 - Very low re-observation cadence
 - ▶ Potentially useful for cosmology → many fields?
- ➤ Other observations typically coarser spatial and/or frequency resolution → TB scale datasets
- However some of the other observations could have high re-observation cadence
- Transient Imaging pipeline for selectively retaining data

Data flow with rates, computes and storage requirements


SKA SDP

B. Nikolic / SDP Team

Science Data Processor

Architectures, Technologies

About the Square Kilometre Array

Science Data Processor

Architectures, Technologies

Summary

About the Square Kilometre Array

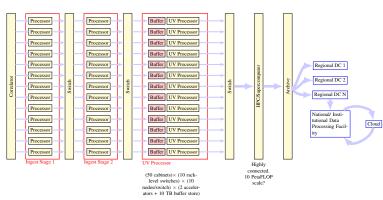
Science Data Processor

Architectures, Technologies

Rapid progress, often driven by consumer technologies:

- ► > 10 TeraFLOPS/ accelerator card likely in 2017
 - ► 100 PetaFLOPS \implies 10⁴ cards, \sim 2 MW
 - \blacktriangleright At 2 cards/per node, $>50\,\mathrm{TB~s^{-1}}$ total inter-node network capacity easily achieved
- ► > 1 TB s⁻¹ total network throughput possible today (600 port Infiniband FDR)
- Nodes with 2×FDR +2 × 40 GbE already being deployed
 - \implies 10/GB s⁻¹ onto one node
- 40 kW/rack with water-cooled cabinet doors
 - ► 100 PetaFLOPS, 2 MW ⇒ 50 racks

High-level dataflow/possible architecture


SKA SDP

B. Nikolic / SDP Team

About the Square Kilometre Array

Science Data Processor

Architectures, Technologies

About the Square Kilometre Array

rocessor

Architectures, Technologies

Summary

- Tiered data distribution allows use of existing/forthcoming national compute facilities
- Remote (institutional/national/international)
 visualisation and compute
- Efficient collaboration for large science teams essential

CyberSKA

Science Data Processor

Architectures, Technologies

- ► A large software engineering project: hybrid between conventional HPC, 'big data' and streaming processing
- Need both flexibility <u>and</u> the ability to operate autonomously (without human intervention)
- Data flow and data-locality critical
- ► Few *iterations*, mostly data-parallel
- Streaming / soft-realtime processing
- Evolving underlying hardware

About the Square Kilometre Array

> Science Data Processor

> echnologies

Summary

About the Square Kilometre Array

Science Data Processor

Architectures, Technologies

- ▶ Very large data rates in SDP:
 - ▶ Internal rates $\sim 1 10 \, \mathrm{TB \, s^{-1}}$
 - ▶ Into archive $\sim 0.1 1 \, \mathrm{PB} \, \mathrm{day}^{-1}$
- Complex, varied, processing before data reduction
- SDP cost analysed and balanced against overall SKA system
- Commercial COTS H/W roadmaps look promissing
- Challenges:
 - S/W design, construction, maintenance
 - System complexity
 - H/W & S/W failures
 - Schedule
 - Science Analysis on large data-cubes