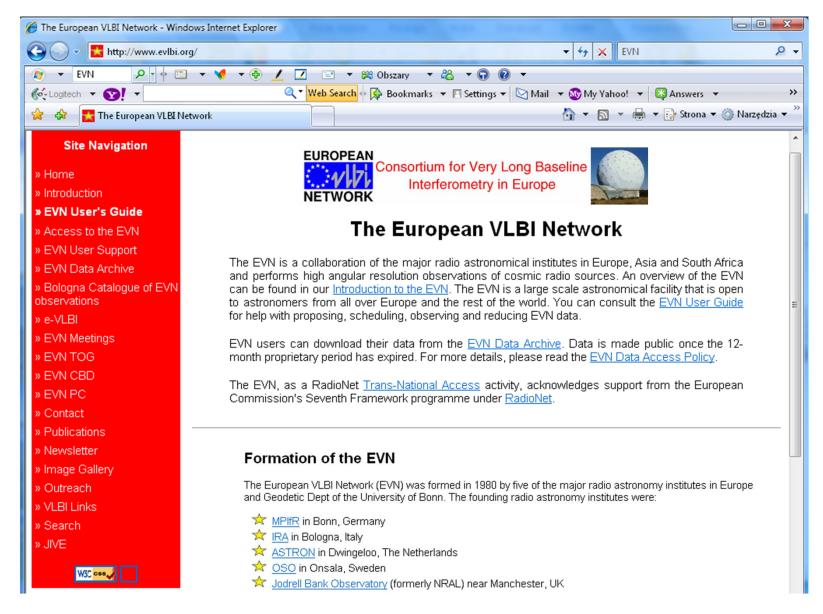
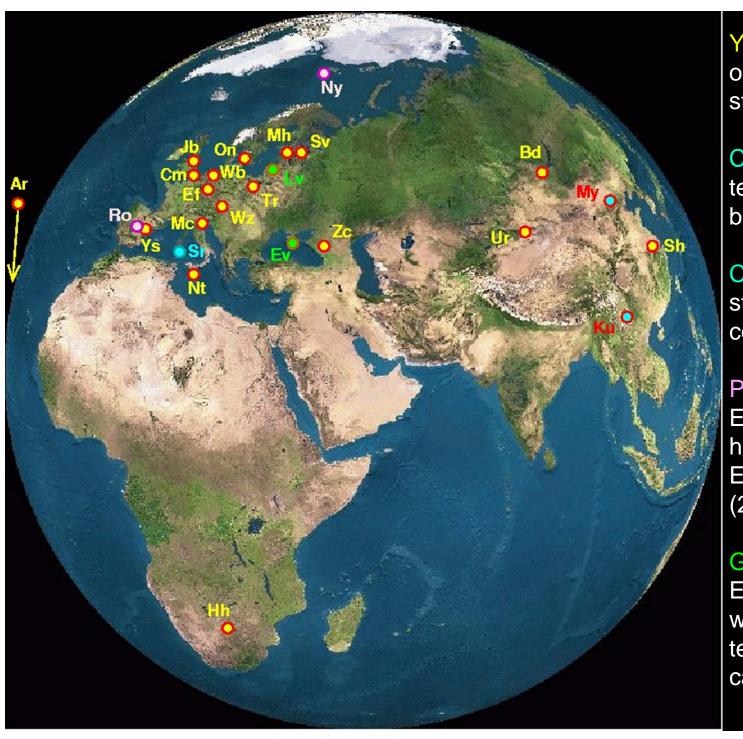


European VLBI Network


Andrzej Kus, Torun, Poland



VLBA Workshop, Charlottesville 27.01.2011

http://www.evlbi.org

Yellow/Red: current operational EVN stations (18)

Cyan/Red: existing telescopes soon to be EVN stations (2)

Cyan/Blue: new EVN stations under construction (1)

Pink/Purple: non-EVN stations that have participated in EVN observations (2)

Green/Brown: non-EVN stations with whom initial EVN tests have been carried out (2)

Formation of the EVN (EVN Consortium)

The European VLBI Network (EVN) was formed in **1980** by five of the major radio astronomy institutes in Europe and Geodetic Dept of the University of Bonn. The founding radio astronomy institutes in red:

EVN institutes and stations:

MPIfR Effelsberg (Germany) Jodrell Bank & Cambridge (UK)

IRA Medicina (Italy) Metsähovi (Finland)

Noto (Italy) OSO Onsala (Sweden)

Robledo/DSN (Spain) Shanghai (China)

Torun (Poland) Urumqi (China)

ASTRON Westerbork (Netherlands) **Wettzell** (Germany)

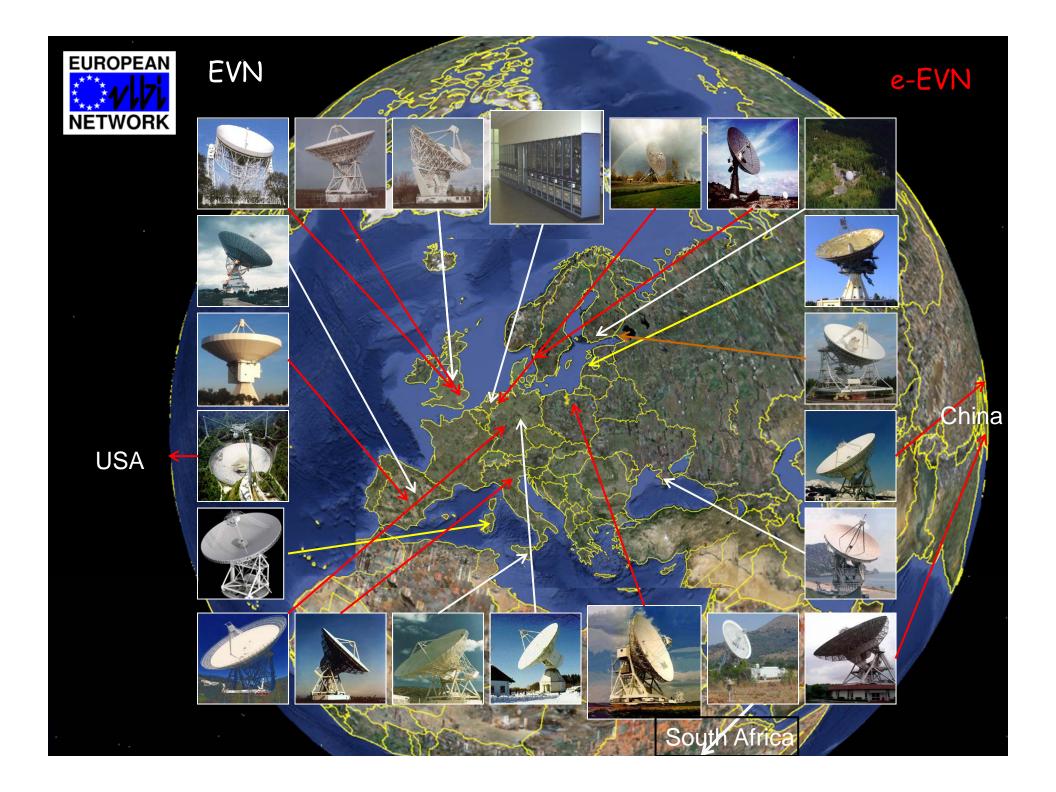
OAN-Yebes (Spain) Hartebeesthoek (South Africa)

Arecibo (Puerto Rico, USA) **IAA** (Russia)

12 countries, 18 telescopes

Correlators for EVN observations

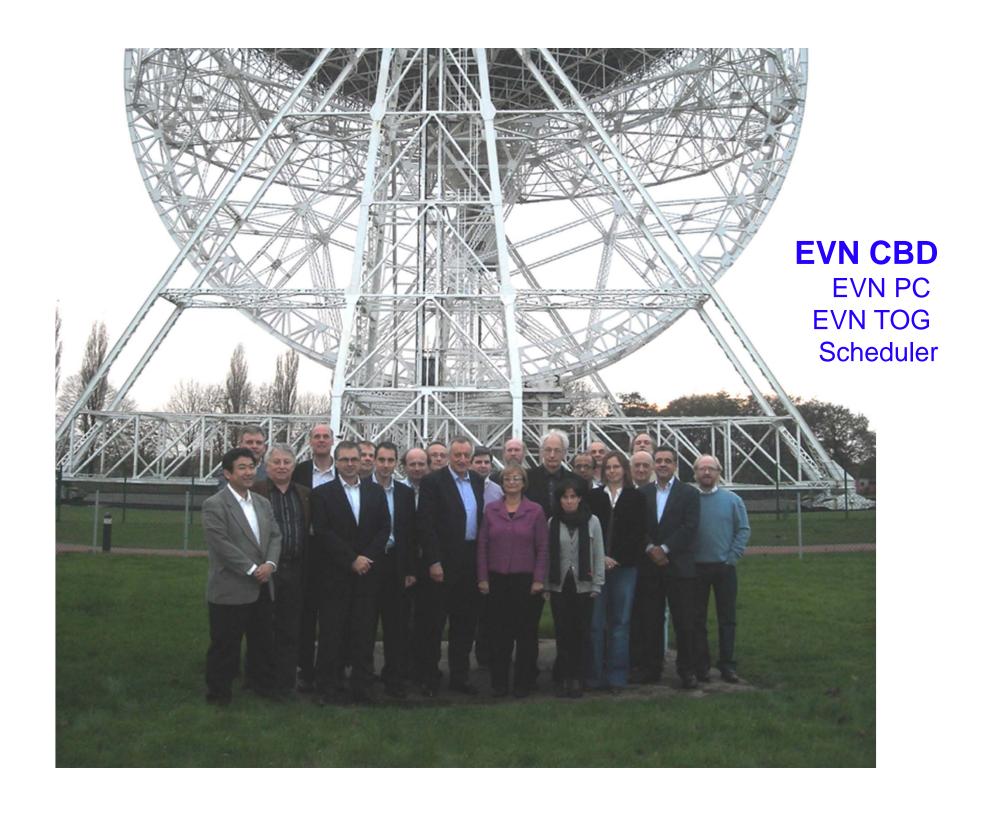
JIVE, Dwingeloo (Netherlands), MPIfR (Germany), NRAO (USA)


EVN Officers

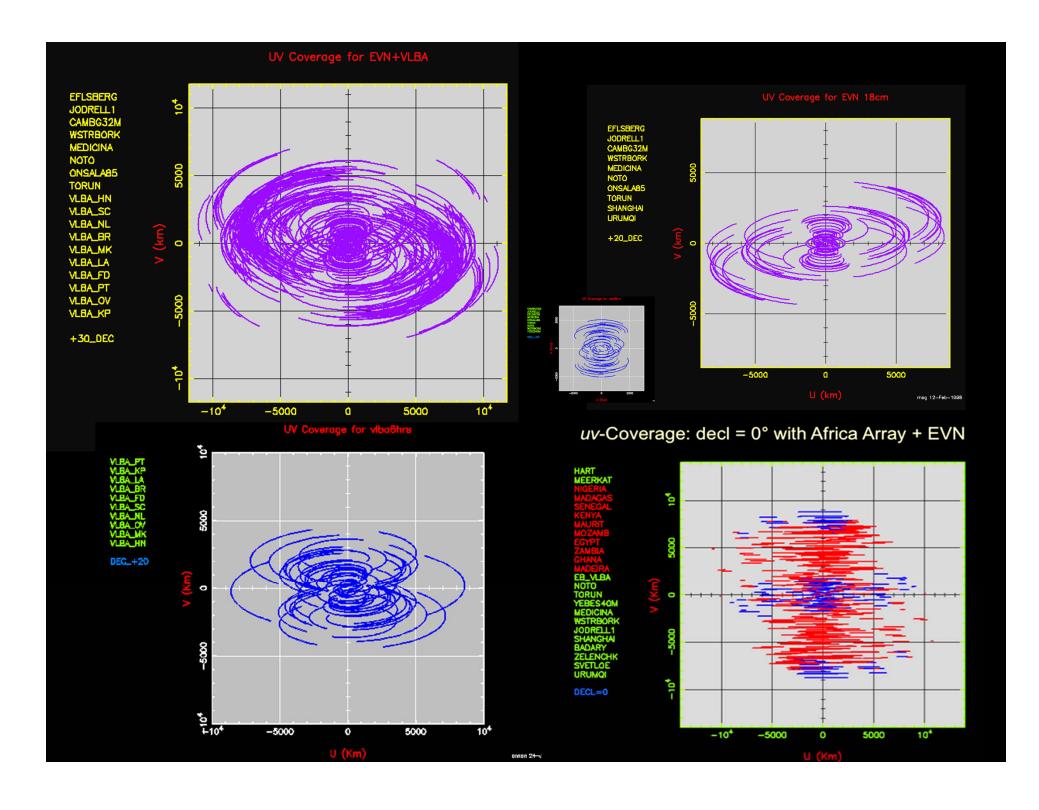
EVN Consortium Secretary: Magdalena Kunert-Bajraszewska (tcfa)

EVN PC Chair: Tiziana Venturi (t.venturi@ira.inaf.it)

EVN Scheduler: Richard Porcas (porcas@mpifr-bonn.mpg.de)

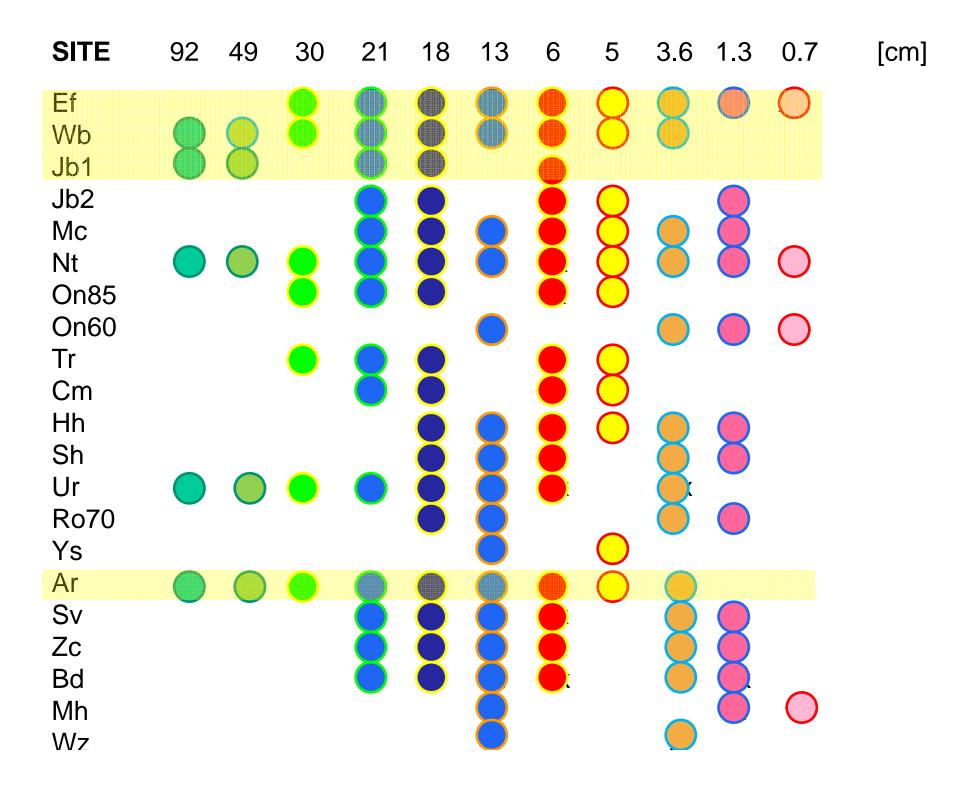

EVN TOG Chair: Walter Alef (alef@mpifr-bonn.mpg.de)

e-MERLIN The key element of EVN


~ 50% EVN proposals request MERLIN

EVN Structure and Bodies

Consortium of individual Institutes and Observatories which share an overlapping plan of development and telescope observing time

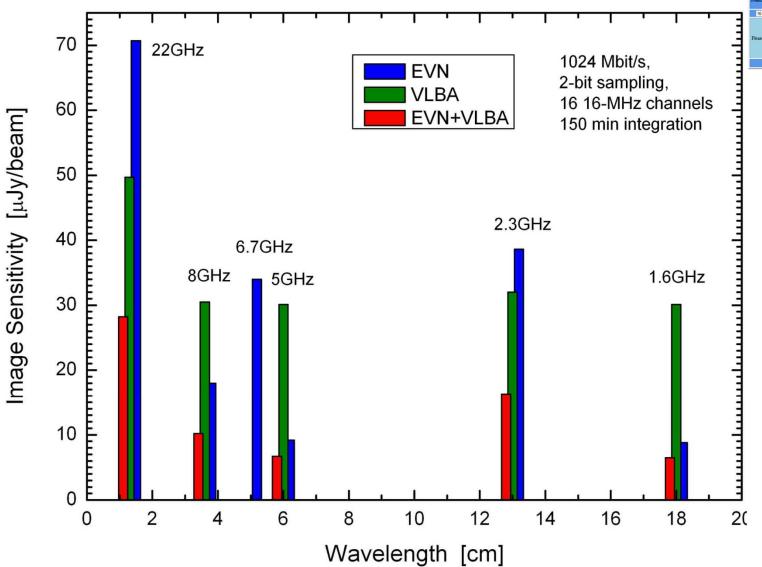


						FREQUENC	Y (RECEIV	ER) AGILI	TY
	Code Diameter(m)	AVAILABILITY (see also TABLE II)	i	SWITC	CONT	RI	AVELENGTH:		COMMENT
Jodrell Bank (UK) Cambridge (UK) Westerbork (NL) Effelsberg (D) Medicina (I)	Jb-1 Lovell 76 Jb-2 Mk2 25 Cm 32 Wb Array Nx25 Eb/Ef 100	Wavelengths >=6cm Wavelengths < 18 cm For EVN+MERLIN only - see(a) See note (b)	Eb Ef Eb Ef Wb	40s 40s 40s 40s 300s 70s	yes yes yes yes no	13, 6, 18,21 18,21 92,49,3 18/21,	3.6, 2, 1 2, 1 0,21,18,13 13, 3.6,	.3, 0.7 .3, 0.7 3,6,3.6	sec. focus / high single-box rx / l single rx; I.F. l single rx; I.F. l prime focus prime focus
Noto (I) Onsala (S) Sheshan(Shanghai,CH) Nanshan(Urumqi,CH) Torun (PL)	Nt 32 On-85 25 On-60 20 Sh 25 Ur 25 Tr 32	Wavelengths >= 5 cm Wavelengths < 5 cm, + 13 cm	Nt On85 On85 On60 On60 Tr	70s 0s 0s 600s 60min 30s	no yes yes no no yes	18, 13, 18, 21 1.3, 0. 3.6/13 18, 6,	3.6, 1.3 6,5 7, 0.3 to <1.3 5	1.3(-)	Changes in PRC fi Changes in PRC fi SCHED switch betw Changes in PRC fi Manual IF-VC cabl
Metsaehovi (FI) Yebes (E) Arecibo (USA) Hartebeesthoek (SA) Wettzell (D)	Mh	Wav. 1.3, 0.7 cm. 13,3.6 Wavel. 1.3, 3.6, 5, 13cm (e) see note (c)	Sh Ur Ro70	5mi 50mi 300s 300s	n no n no yes yes	13/3.6, 1.3,3.6 Any ban	6, 1.3 /13,6,18/		ĺ
Svetloe Zelenchukskaya	Sv 32	İ			LOCAL		REQUENCY RA		COMMENTS
OTHER OBSERVATORIES			 Eb/Ef Jb1/2	yes yes	- no* yes*	1290-1430, 1370-1430,	1590-1725 1550-1730 1550-1730	New syste	ch time
Kunming Robledo (Madrid, E) Matera (I)	Km 40 Rob70 DSS-63 70 Rob34 DSS-65 34 DSS-54 34	Limited; 13, 3.6, 30cm only Limited; 13, 3.6cm only Limited; Limited; 13, 3.6 cm only Limited; 7mm only see note (d)	Wb Mc Nt On85 Tr Ur Ar Hh Sh	no yes yes yes	yes yes no yes* no no* ? -	1150 1350-1450, 1400 1200-1450, 1350 1400 1150	- 1800 1595-1715 - 1705 1594-1720 - 1750 - 1735	rephase a 21 and 16 Continuon Changes i mixed pa 	after agility(5Min) 3:different ptg model us band (no delay)

more telescopes/Institutes aspire (China, Ukraine, Japan,)

TABLE II ANTENNA+RECEIVER PERFORMANCE (SEFD = system noise in Jy)

-													
	Wavel'th				21 # 					3.6* 	1.3	0.7 c	-m
i	Jb-1 (e)	132	83		36=	44=		35					i
I	Jb-2 (d)				350=	320=		320	300	l	910	l	I
ı	Cm (a)	i i		i i	220=	212=	İ	136	410		720	l	Ī
-	Wb (b)	150	90	120	30=1	30=	60y	60	1600	120		l	1
1	Eb/Ef	l		65	20=	19=	300r	20	25	20	90	200	- 1
١	Mc	l		l	490=	600=	400	170	840	320	700+	l	I
١					I				I			I	1
١	Nt	980s	yes	1025	820=1	784=	770r	260	1100	770r	800	900	- 1
١	On-85			900	320=1	320=			1500			I	- 1
١	On-60				 		1110r		(09)?	1000j	1380j	1310j	jl
١	Sh				I		800r		I	-	1700	I	- 1
١	Ur	3020s			350=				I	480r	(f)	I	- 1
-	Tr			2000	250=	230=		220	400		(08)	I	- 1
•					I				ļ				·-!
-	Mh !			!!!	!		4500r			3200r		4500	!
Heres	Ys (h)						2175551232115551232115651232	01905010201905010201905010	484		200		
	Ar	12	12	3	3.5	3		5	5	6			- !
_	WZ			!!			1250r		l . 600	750r		!	- !
-	Hh	l	l 	l I		450	380	795	680	940	3000	I 	!
	Sv	I	1	I I	240 I	240	330	140	ı	200	710	I	i
i	Zc	i i		i i	240	240	330	140	i	200	710	i	Ĺ
i	Bd	i i		i i	240		330	140	l	200	710	Ì	i
-													
ı	My	(09)	(09)				(09)r		I	(09)r		I	- 1
١	Km						350r		I	480r		I	- 1
1	Rob70					35L	20-		I	18	83	I	- 1
1	Rob34						150		I	106-		lу	- 1
1	Ny				İ		850r		I	1255r		I	- 1



EVN Calculator

256 MHz BW

EVN + VLBA network sensitivity

Current Status

18 radio telescopes – not all available at all frequencies

(e)MERLIN joins at a number of observing frequencies

6 standard bands + 5 non standard

Continuum and spectral line observing

Disk Recording rate up to 1 Gbps EVN correlator at JIVE

Standard bands

Waveband	Default central frequency
18 cm	1664 MHz
13 cm	2268 MHz
6 cm	4992 MHz
5 cm	6668 MHz (Methanol), 6030 MHz (OH)
4 cm	8418 MHz
1 cm	22230 MHz

Angular resolutions in milliarcsec

Array	90 cm	18cm	6cm	3.6 cm	1.3 cm	0.7cm
EVN	-	15	5	3	1	0.6
EVN (inc. Sh/Ur)	30	5	1.5	1	0.3	0.15
EVN+VLBA	19	3	1	0.7	0.25	0.13

Non standard bands

Waveband	Default Central Frequency
90 cm	327 MHz
50 cm	610 MHz
21 cm	1416 MHz
2 cm	15362 MHz
7 mm	43214 MHz

Image sensitivity in μ Jy/b for 128 Mbps ($\Delta v = 64$ MHz) and 8 hr on source

Array	18cm	6cm	5cm	3.6 cm	1.3 cm
EVN Array (*)	28	35	148	96	238
+Ro-63	22	-	-1	48	148

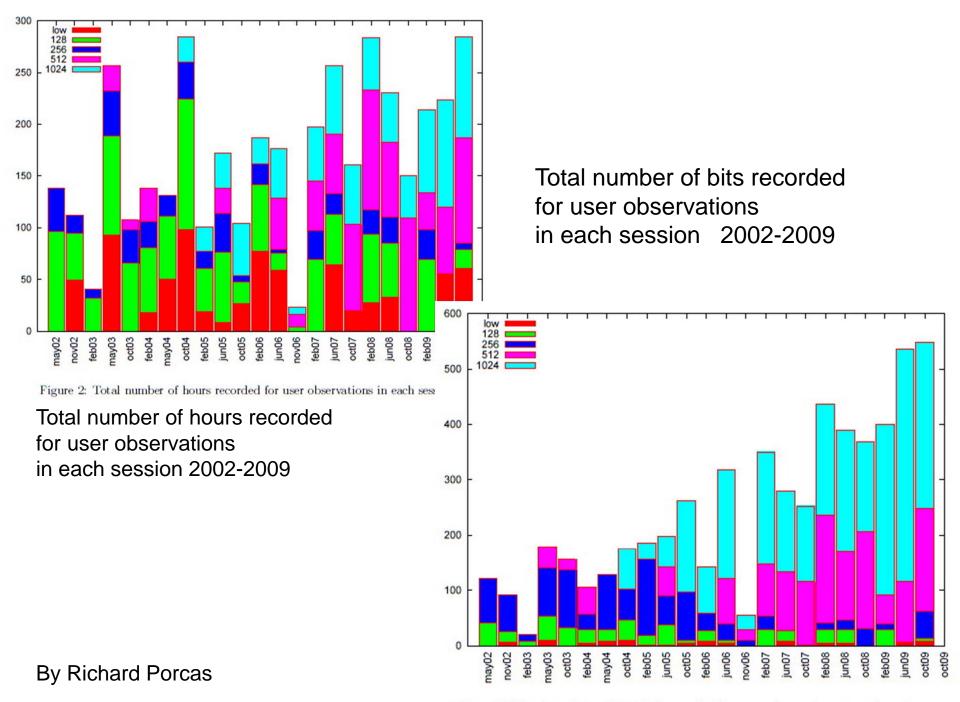
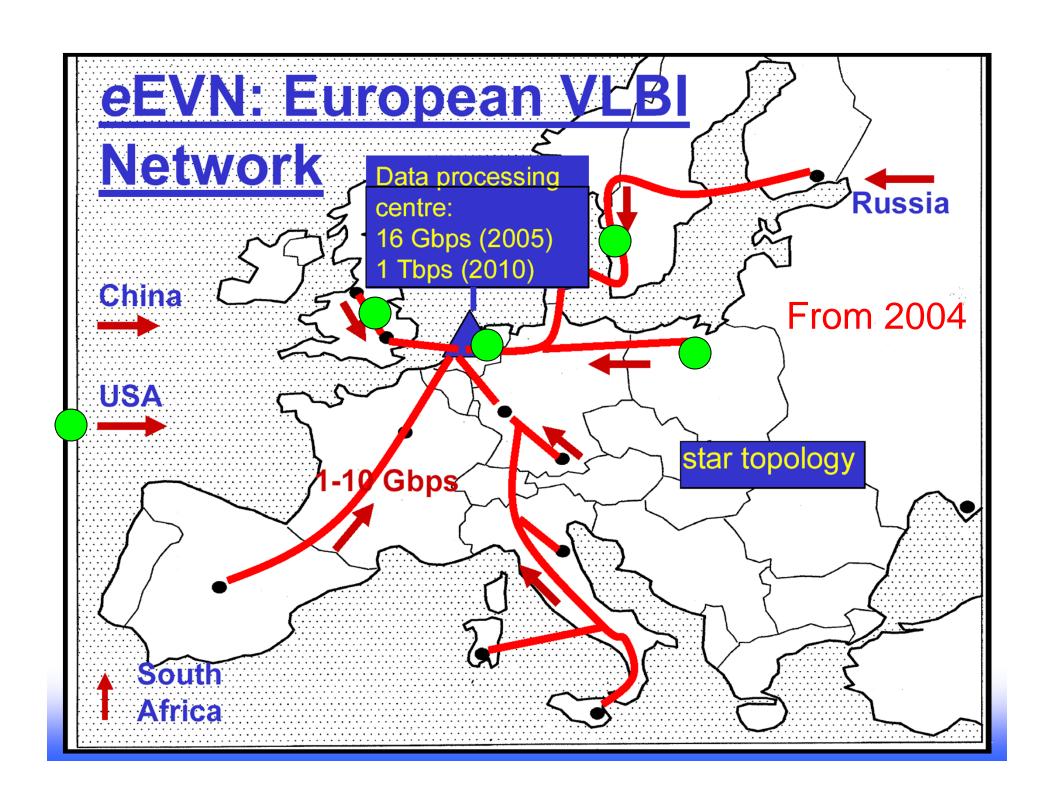
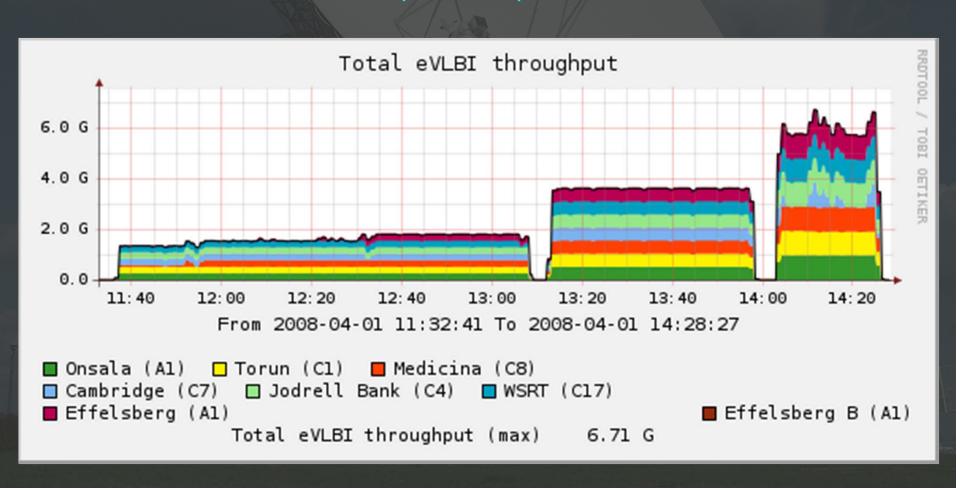
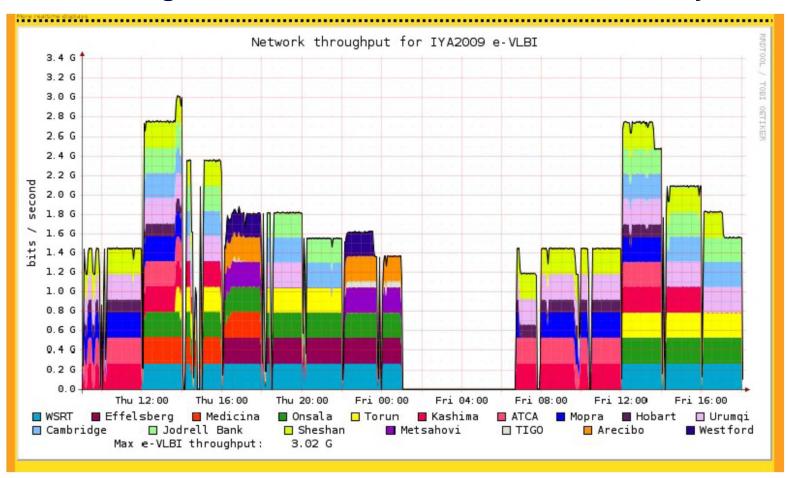




Figure 3: Total number of bits (TB) recorded for user observations in each session

e-EVN since 2004

(here Apr. 2008 performance)

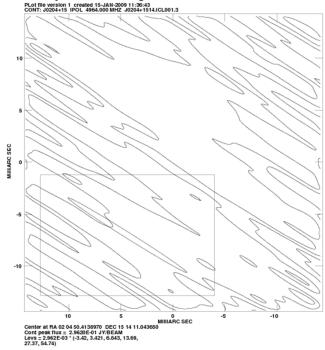
AŠTRONOMII 2009

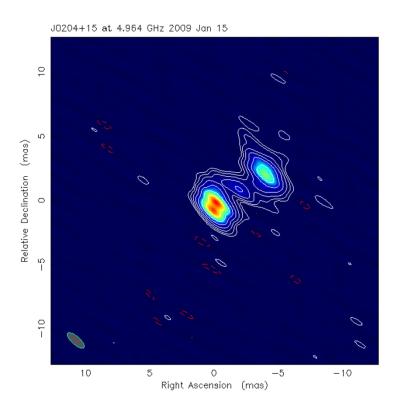

Public outreach at the EVN observatories

ODKRYJ WSZECHŚWIAT W TORUNIU

e-vlbi

15-16 January 2009 Inauguration of International Year of Astronomy





ODKRYJ WSZECHŚWIAT W TORUNIU

e-vlbi 15-16 January 2009 IYA

15 styczeń 2009, godzina 11:36 PLot file version 1 created 15-JAH-2009 11:36-43 CONT: 30204-15 IPOL 4964.000 MHZ 30204-1514.JCL001.3

The EVN sites operating in e-EVN mode

e-EVN the SKA Pathfinder

The programme funded by the participating institutes and external sources, EC FP6/FP7 projects EXPReS (2006-2009) and NEXPReS (2010-2013).

The development of user software supported through the FP6 and FP7 RadioNet (JRA ALBUS and ALBBiUS).

Development of correlator software EXPReS (JRA FABRIC),

Development of the UniBoard is also funded by FP7 RadioNet as JRA.

e-EVN stations remotely controlled by JIVE:

WSRT, JBO, Cambridge, OSO, Torun, Medicina, Arecibo, Yebes, Effelsberg, Shanghai, Urumqi, KVAZAR, Hartebeesthoek,

e-EVN sessions 2 days / month

e-EVN status table

Advertised frequencies and array configurations

Frequency band	e-EVN array
1.6-1.4 GHz (18-21cm)	Ar, Cm, Ef, Hh, Jb, Mc, On85, Sh (1.6 GHz), Tr, Wb14
5 GHz (6cm)	Ar, Cm, Ef, Hh, Jb, Mc, On85, Sh, Tr, Ys, Wb14
6 GHz (5cm)	Ar, Cm, Ef, Hh, Jb, Mc, On85, Tr, Ys, Wb1
22 GHz (1.3cm)	Cm, Ef, Hh, Jb, Mc, Mh, On60, Sh, Ys

The expected aggregate bitrate is 1024 Mbps with the following limitations. Arecibo is limited to 512 Mbps, and further limited to 256 Mbps outside UT range 4-10. Shanghai is temporarily limited to 256 Mbps. Medicina and Yebes are limited to 896 Mbps; in the 1024 Mbps mode (usually) the highest subbands are dropped. The effective data rate to the MERLIN telescopes (except for Jb1/Jb2) is 128 Mbps due to analog bandwidth restrictions. Availability of MERLIN outstations and Jb2 will be limited in 2010/2011 due to the e-MERLIN upgrade. Hartebeesthoek is now available for e-VLBI science and it will operate at full 1024 Mbps starting from the 23 November 2010 e-EVN run.

Upcoming e-EVN runs

23 November 2010, 13:00	17:10	24 November 2010, 13:00	17:14
UTC	GST	UTC	GST
15 December 2010, 13:00	18:36	16 December 2010, 13:00	18:40
UTC	GST	UTC	GST
25 January 2011, 13:00	21:18	26 January 2011, 13:00	21:22
UTC	GST	UTC	GST
15 February 2010, 13:00	22:41	16 February 2010, 13:00	22:45
UTC	GST	UTC	GST
22 March 2011*. 13:00			

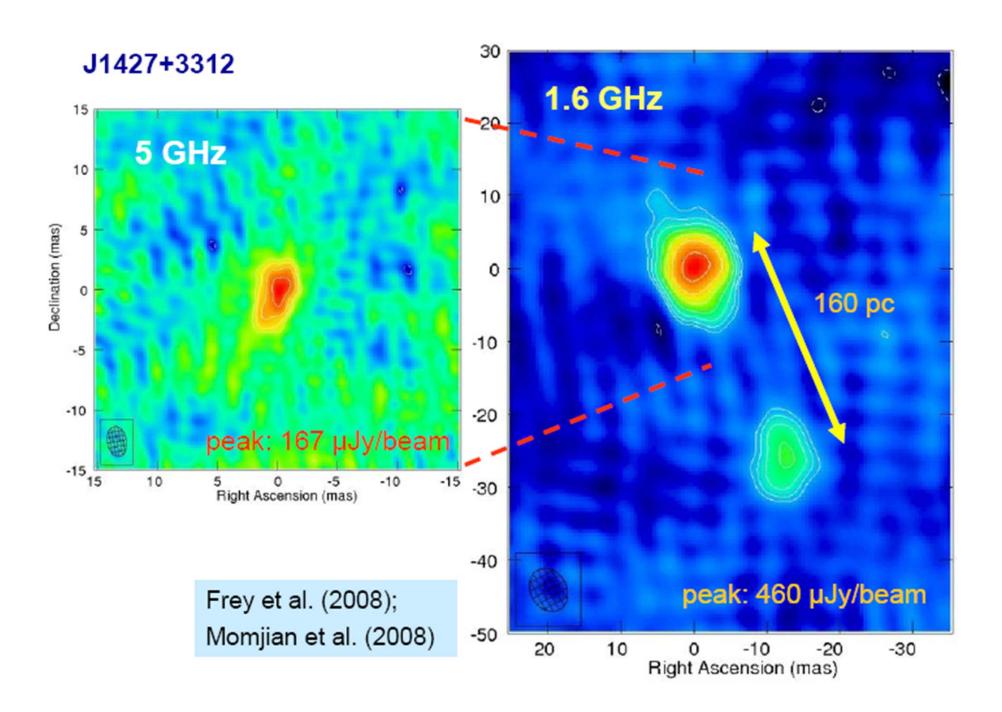
Current operation - numbers of proposals

~ 20 proposals received every call (3/year) (70% success rate)

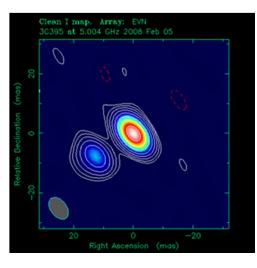
21/18 6 5 3.6 1.3 cm wavelength

50% 20% 10% 10% 10% (2008-2010)

95% EVN (~50 % MERLIN) 5% global

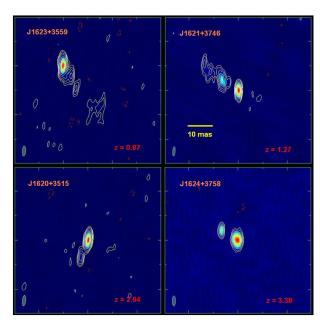

High z QSO ~40% AGNs , Galaxies ~30% Masers ~20% Stellar ~5% Others ~5%

ToO ~8 proposals / year

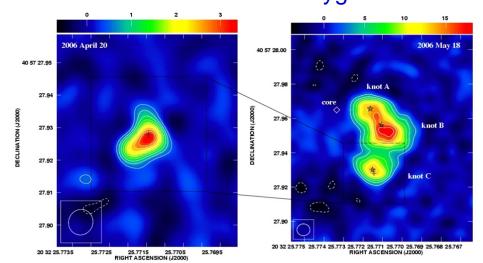

other (short obs. Requests) ~4/y

- -TeV flare in M87
- Gamma-ray Nova V407 Cyg
- Cyg-X transition state
- X-ray transient J1659-152

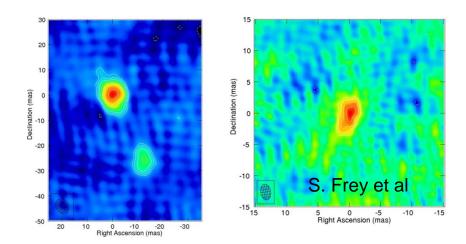
- high z dusty quasars
- ultra steep spectrum RG


Some of EVN and Global VLBI results and images

EVN Image Gallery

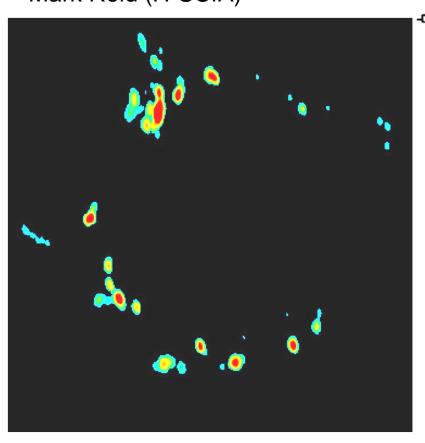

and

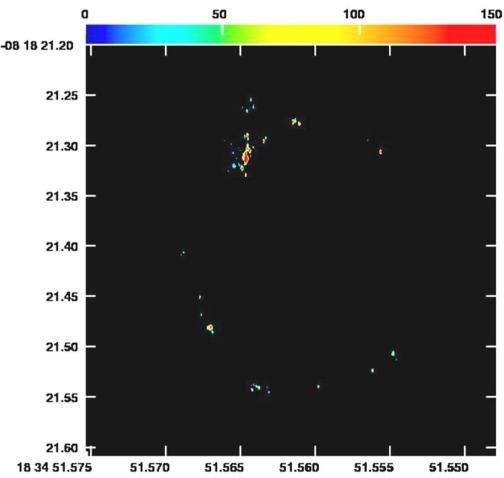
Bienial Reports


e-VLBI observation of 3C395 @ 1 Gbps

e-VLBI observations of Cygnus X-3

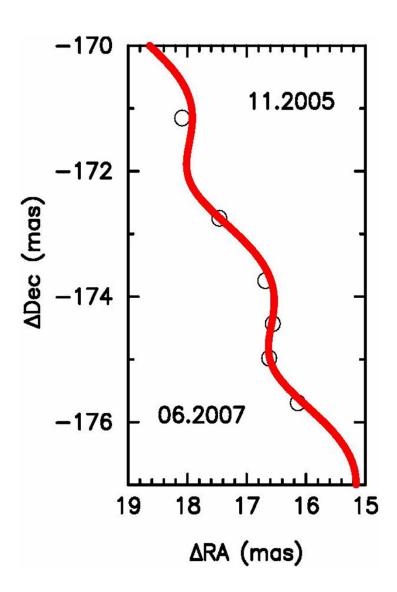
Tudose et al. (2007)


Sources from the Deep Extragalactic VLBI-Optical Survey (DEVOS) S.Frey, S.Garrington et al.



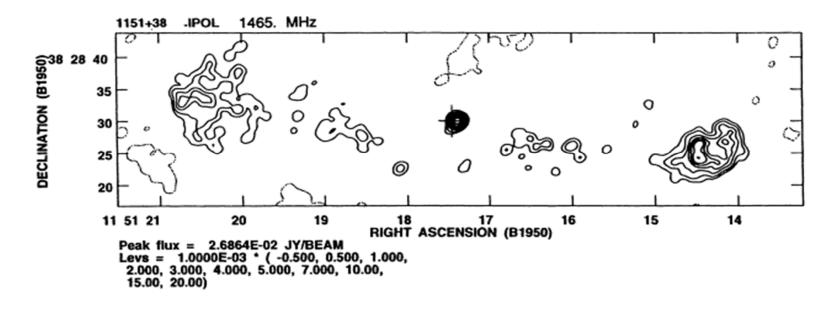
A compact symmetric object at z=6.12 ?

Anna Bartkiewicz (Torun, UMK), Andreas Brunthaler (MPIfR) Marian Szymczak (Torun, UMK) Huib van Langevelde (JIVE), Mark Reid (H-SCfA)


Parallax measurements to the methanol maser ring G23.657-0.127

Discovery of the ring-like structure of 6.7 GHz methanol maser using EVN (Bartkiewicz et al. 2005).

Detection of 12.2 GHz methanol maser towards the ring using VLBA.

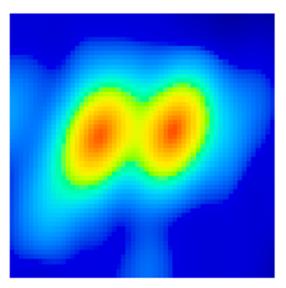

Observations of the ring in six epochs in 2006-07 lead to determination of the trigonometric parallax: 0.313 (+/-0.039) mas and the distance of 3.19 (+0.46/-0.35) kpc (Bartkiewicz et al. 2008).

The size of the ring is estimated to be 405 au.

The distance is 30 percent closer than it was esimated from the near kinematic distance (5 kpc).

Bondi et al. (1993) A&AS 101, 431

1151+384 (VLA A-config.)

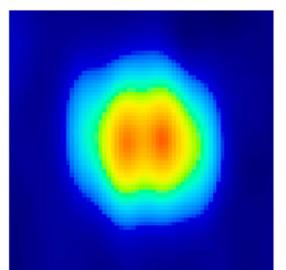


15 GHz VLBA proposal by A.Marecki

"1151+384 – the most compact and most puzzling double-double,

1151+384 is an extreme case of a DDRS

1151+384: $z=0.198232 -> D_A = 669.3 \text{ Mpc} -> 3.245 \text{ pc/mas}$



17-Oct-2003, VLBA, 15 GHz

Beam size = 0.87×0.52 mas Position angle=-20.55 deg

Separation =0.75 mas (2.44 pc)

17-May-2009, VLBA, 15 GHz

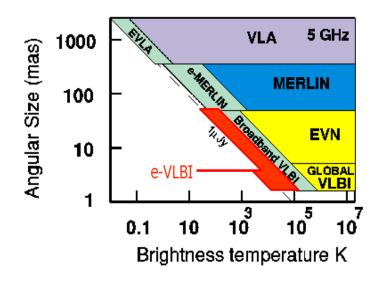
Beam size = 1.13×0.45 mas Position angle= 0.13 deg

Separation =0.39 mas (1.27 pc)

Shrinking rate: 0.176 pc/year=0.57*c* (!)

Third epoch – VLBA - completed Dec. 2010 Andrzej Marecki, Torun, UMK.

(PD 2004)


Technical

sub-microJy noise level full uv-covarage via Multi-Frequency Synthesis frequency flexibility and broad band covarage 0.3 – 1 GHz, 1-3 GHz, 4-8 GHz, 4-8 GHz, 15,22,43 GHz

Milliarcsec resolution and sub-mas astrometry
Wide-field imaging as standard
Simultaneous continuum and spectroscopy observations
New generation Software Correlator
Dynamic, central schedulling and control over the network

Astronomical

Ultra –sensitive High-resolution Imaging, astrophysics, cosmology, astrometry

Current activities of the EVN

(Except the observations & technology development)

EVN Symposia, Workshops, student's training (EC FP, M-C)

EVN NewsLetter

EVN Biennial Reports

EVN / JIVE web pages

EVN Public outreach

+ individual activities at each EVN Partner Institute

Strong points

EVN

EC support FP

Sensitivity

e-EVN / technology development

new antennas (SRT, Yebes)

u-v covarage

Open access - Number of users grow

Strong National Institutes/Facilities

Students

European co-operation

EVN Symposium/Workshops (most recent results ~40% EVN)

JIVE

VLBA

Range of frequencies

4 referees

Open access

Quick allocation

Fast data processing

Reliability

100% VLBI dedicated

Weak points

PC (12 referees)

3 obs. sessions/year

No 12 GHz

High frequency coverage

Calibration

only 24 days/year e-EVN

Individually built equipment

Are there any?

e-VLBA?

4=>2 calls for proposals/year

Goals for the EVN (2010-2015)

- e-EVN as the standard operation
- More time for observations 30% => 50%
- More telescopes (a new once and "an old" N-S; E)
- More bandwidth (2 GHz)
- Reliable calibration system
- New generation correlator
- O High frequency operation f>12 GHz
- RFI mitigation
- JIVE new legal identity as the ERIC
- Closer co-operation with VLBA
- o Co-operation with SKA (e-EVN as SKA Pathfinder)

New telecopes for the EVN (SRT, Yebes, China)

New project for Torun

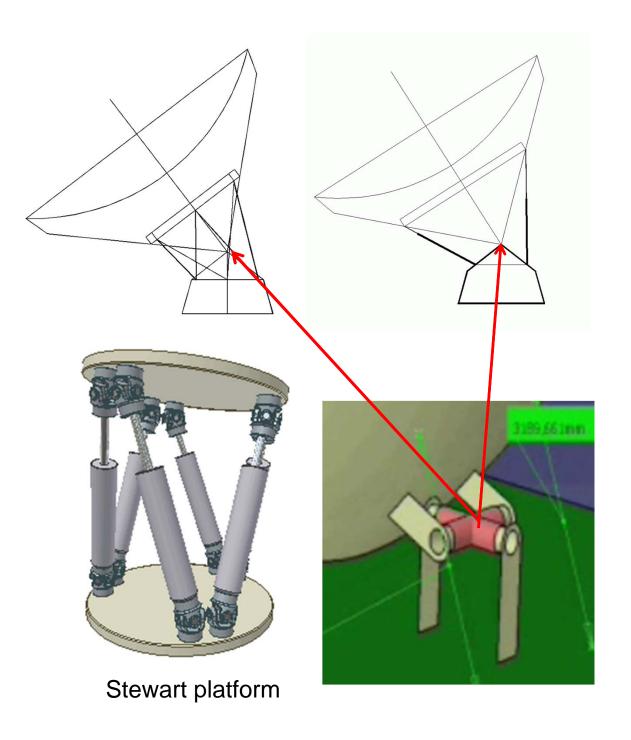
extremely low cost 90m RT

RT90 - the 90m radio telescope - parameters

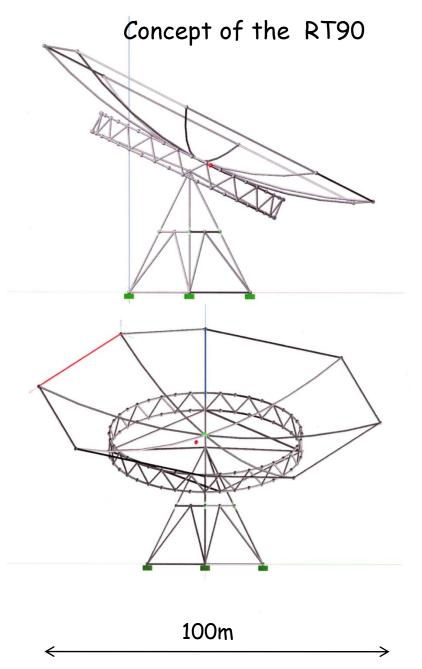
- 1. Diameter ~90 m (symmetric paraboloid)
- 2. Cassegrain optics (f/D i D/d as for RT32)
- 3. Motion: Elevation < 25-90>; Az. <+/- 180>
- 4. Frequency range 0.1 22 GHz
- 5. Bandwidth 16 GHz (in ~4-8 sub-bands)
- 6. Multi beam system <50 100 beams> (APRICOT FP7)
- 7. Digital back-ends (UNIBOARD FP7)
- 8. Fibre optical connection, 10-40 Gb/s (PIONIER)
- 9. Remote operation
- 10. Minimum cost of investment / operation
- 11. Estimated cost of the investment~ 40 MEuro (~ 120 M PLN)
- 12. Science => surveys, sky monitoring, VLBI
- 13. Low level of RFI, radio protected zone
- 14. Proposed location 100 km N of Torun (National Forest)

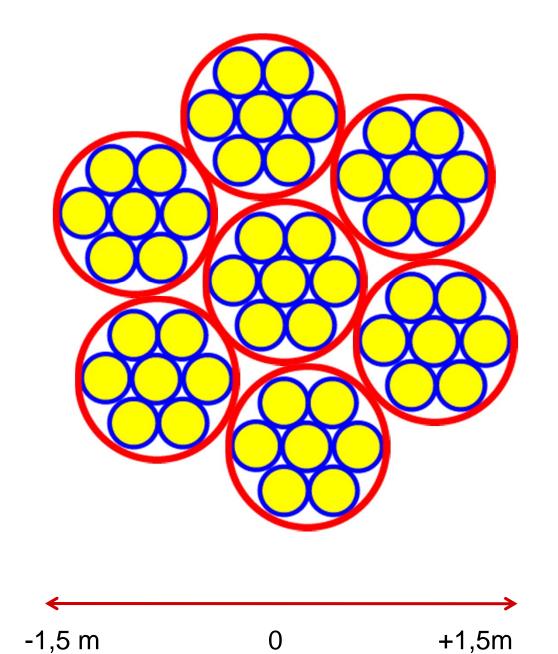
The Antenna

D <80-120m> d = D/10surface 0.5 mm RMS

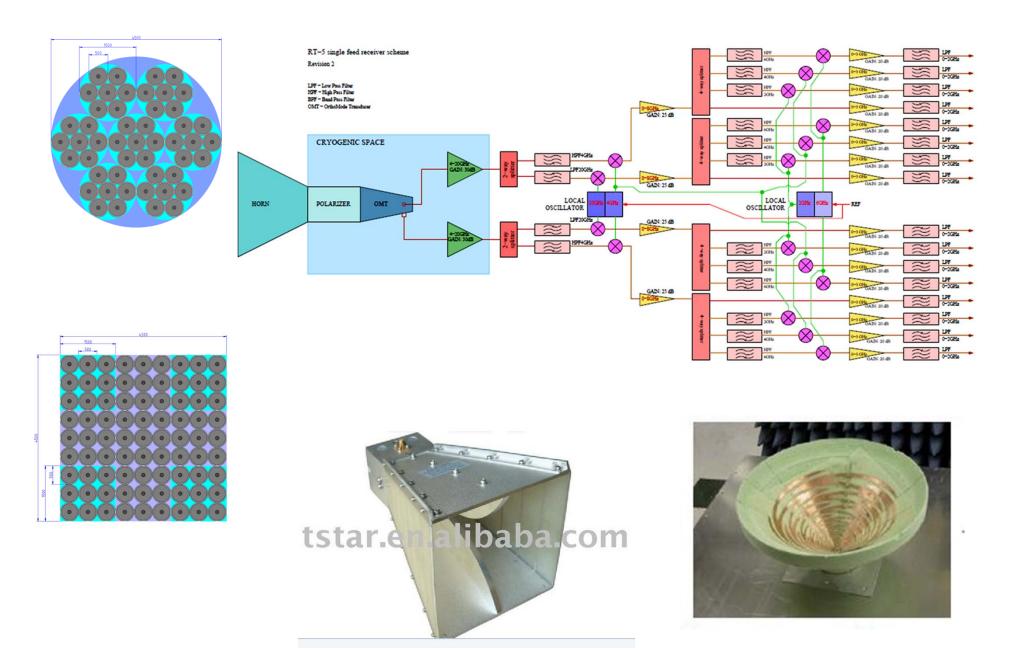

Mount system:

- a) Classical Alt-Az mount weight ~6,000 ton.
- b) Simplified tilting only, hydraulic actuators weight ~1,200 ton.


Pointing 5 arcsec


Tracking 2 arcsec

Slew 30 deg/min


BW 5-21 GHz POL LHC & RHC Sub-Bands 2 GHz

Digital Back-ends

Radiometry
Polarimetry
Spectroscopy
PSRs
Transients

41 outputs x 2 pol x 16 sub-bands = 1312 out channels each with ~1 kHz resolution

Receivers (MMIC?) and digital back-ends based (FPGA technology)

