Inspiraling, Binary, and Recoiling Black Holes in Nearby Galaxies

Jim Condon (NRAO), Jeremy Darling (Colorado), Yuri Kovalev (Astro Space Center), & Leonid Petrov (NASA)

> Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Method and science goals

Make a high-resolution 8.6 GHz VLBA search for offnuclear and binary SMBHs in a complete sample of ~10³ nearby ($< D_A > \sim 200$ Mpc) massive galaxy bulges to:

- (1) discover off-nuclear <u>inspiraling SMBHs</u> predicted by the "merger tree" theory for massive galaxy evolution
- (2) resolve "stalled" binary SMBHs in tight ($d \sim 10 \text{ pc}$) orbits
- (3) discover off-nuclear <u>recoiling SMBHs</u> kicked out by the strong anisotropic gravitational radiation sought by LISA and NANOgrav
- (4) discover currently active nearby SMBHs (no dust bias)

Nearby galaxy sample

2MASS K_{20fe} < 12.25 NVSS $S_{1.4}$ > 100 mJy $\delta \ge -40^{\circ}$, $|b| \ge 5^{\circ}$ N = 923 galaxies

 $< D_A > \sim 200 \text{ Mpc so}$ 1 mas $\sim 1 \text{ pc}$ $< L_{1.4} > \sim 10^{24} \text{ W Hz}^{-1}$ > 90% are radio-loud AGN

$$\delta \ge -40^\circ$$
, $|b| \ge 5^\circ$

Automated Dynamic Scheduling

Automated Analysis

- \bullet Fringe-fitting: dedicated AIPS-independent software \mathcal{PIMA} . Results are exported to
 - 1. Astrometry software VTD/post-Solve for source position estimation;
 - 2. Program flux_est for coarse flux density estimation;
 - 3. DIFMAP for imaging.
- Quality control and interactive astrometric analysis. Second run of refringing outliers.
- Coarse flux density estimation.
- Global astrometric analysis using all astro/geo VLBI data since 1980 through present.
- Update of the project web page.

Typical cost for a 6^h segment: 20^h CPU time and 0.5^h human time.

X-band Images

 $5\sigma \sim 6$ mJy in 8 min $\Delta\alpha$, $\Delta\delta \sim 1-3$ mas $\Theta \sim$ mas DR $\sim 100:1$

First results

