# All Radiation Backgrounds from Star-Forming Galaxies: A Preview

Brian Lacki (IAS/NRAO)
29 April 2013

# EVERYTHING PRELIMINARY

### The Cosmic SED





Credit: Simon Swordy (U. Chicago) / NASA / APoD; Luc Viator

#### The Motivation

Connect UV/O/IR backgrounds to radio and gamma-rays

Radio related to IR at GHz

UV/O/IR emission affects gamma-ray propagation

Radio background poorly understood

ARCADE excess

μJy range probed by JVLA

Propagation of ultra-high energy CRs

Gamma-ray background also poorly understood

How does galaxy evolution affect emission?

Foregrounds for other studies

#### Radio Source Counts



#### The Radio Background



#### The Gamma-Ray Background



#### The Plan

Calculate all EM backgrounds self-consistently with models
One zone models for simplicity
Don't assume, e.g., FIR-radio correlation, at all z
Synthesize what we've learned about galaxies in these

Thermal emission (UV/O/IR) – starlight, dust emission Nonthermal emission (radio –  $\gamma$ -rays) – CR emission

models

# IR Luminosity Functions



Gives number of galaxies at each redshift with each SFR **Problem**: Need gas density, radius, height, magnetic fields, etc.

to predict emission

#### Starbursts vs. the Main Sequence



Piece 1: The Main Sequence



Star-forming, non-starburst galaxies at each z have similar SSFR

SSFR = SFR / M\*

#### Piece 2: The Schmidt Law



Gas density related to star-formation rate by dynamical time

$$SFR = \eta M_g (R/v_{circ})$$

Assume  $v_{circ} = 200 \text{ km/s}$ 

#### Pieces 1a & 2a: Starbursts

Starbursts have much higher SSFRs, different Schmidt law

$$\tau_{gas} = SFR / M_{gas} = 20 Myr$$
 $R = 150 pc (1 + z)^2$ 

#### Piece 3: Toomre Q is 1

Toomre Q is near 1 if disks are in equilibrium

Gives relation between **height** and **radius** 

$$\sigma/v_{circ} = h/R = f_{gas} / 2$$

Need relation for turbulent speeds σ

$$\sigma = \min [15 \text{ km/s} (\log_{10} \Sigma_{SFR} + 2), 8 \text{ km/s}]$$

# Piece 4: The Fundamental Mass-Metallicity Relation



Relates stellar mass to metallicity at a given redshift Lower mass galaxies lower metallicity Metallicity needed for stellar spectra, dust emission

# Putting it all Together

| SFR             | Mode | Z | Mstar  | Mgas   | R     | h    |
|-----------------|------|---|--------|--------|-------|------|
| 0.10            | MS   | 0 | 5.6e8  | 4.9e7  | 1800  | 72   |
| 3.2 (MW)        | MS   | 0 | 4.2e10 | 3.7e9  | 10000 | 410  |
| 10              | MS   | 0 | 1.8e11 | 1.5e10 | 15000 | 580  |
| 3.2             | MS   | 1 | 3.2e9  | 6.3e8  | 2500  | 230  |
| 32 (z~1 LIRG)   | MS   | 1 | 5.7e10 | 1.4e10 | 6100  | 660  |
| 3.2             | MS   | 2 | 7.0e8  | 2.5e8  | 1200  | 170  |
| 320 (z~2 ULIRG) | MS   | 2 | 2.2e11 | 1.1e11 | 6300  | 1100 |
| 3.2             | MS   | 3 | 3.9e8  | 1.7e8  | 870   | 140  |
| 320             | MS   | 3 | 1.2e11 | 7.8e10 | 4600  | 930  |

Get reasonable values for galaxy properties

#### Putting it all Together

| SFR           | Mode | Z | Mstar | Mgas  | R    | h   |
|---------------|------|---|-------|-------|------|-----|
| 3.2 (NGC 253) | SB   | 0 | 6.4e7 | 6.4e7 | .150 | 41  |
| 10 (M82)      | SB   | 0 | 2e8   | 2e8   | 150  | 47  |
| 180 (Arp 220) | SB   | 0 | 3.6e9 | 3.6e9 | 150  | 61  |
| 100           | SB   | 1 | 2e9   | 2e9   | 600  | 180 |
| 1000 (SMG)    | SB   | 2 | 2e10  | 2e10  | 1400 | 430 |
| 1000          | SB   | 3 | 2e10  | 2e10  | 1900 | 550 |

Get reasonable values for galaxy properties

#### The Unabsorbed UV/O/IR Spectra



Starburst99 Spectra

Continuously forming stars for 1/SSFR

#### Dust Absorption and Emission: One Zone Models

Most star-formation in Universe is heavily extinguished

Dust (1) absorbs UV/O light and (2) emits IR light

Both are linked: internal SED sets grain temperatures

One zone model for internal SED

$$u_{\lambda} \sim s/c \left( \varepsilon_{stars} + \varepsilon_{dust} \right)$$

Iterative process – guess first  $u_{\lambda}$ , feed into  $\varepsilon_{\text{dust}}$ , repeat

### MIR Emission: Not Just One T





Grains transiently heated by UV light

Cooling responsible for MIR emission

Problem: SEDs can be very different

Dwarfs: much light in UV – strong MIR

Starbursts: most light in FIR – weak MIR

#### The Continous Cooling Approximation

Grains lose energy by emitting one photon at a time
But energy of photons small compared to grain energy
So treat it as continous process
Very simple

### Temperature Distributions: Milky Way



Grains have wide distributions of temperatures
Smaller grains have wider temperature distributions

# Temperature Distributions: M82



Temperature Distributions: Arp 220



Grains heated by thermal FIR Well-defined temperatures

### Temperature Distributions: z ~ 1 MS



#### Temperature Distributions: z ~ 2 MS











# The UV/O/IR Background



#### CR Populations: The Simplest Version

$$Q(E) \times t(E) \sim N(E)$$

at energy E

Rate at which Time particles particles survive with injected energy E

Number of particles with energy E

Shorter t(E) at high E – steeper (softer) spectrum Shorter t(E) at low E – flatter (harder) spectrum

#### The Life of a CR Electron

#### Flatten Spectra Steepen Spectra



Diffusive Escape
Convective Escape





Synchrotron Inverse Compton





#### Secondary e<sup>+/-</sup>



Cosmic ray protons hit ISM protons and make pions

$$\pi^{+}$$
  $\rightarrow$   $e^{+}$   $+$   $\nu_{e}$   $+$   $\nu_{\mu}$   $+$   $\nu_{\mu}$   $\pi^{-}$   $\rightarrow$   $e^{-}$   $+$   $\nu_{e}$   $+$   $\nu_{\mu}$   $+$   $\nu_{\mu}$ 

Secondary e+/e-

Gamma-rays & neutrinos

#### Magnetic fields

Biggest uncertainty

But B ~ SSFR1/2 dependence motivated by FIR-radio correlation Also SFR-driven turbulence

$$B = 8 \mu G \left( \Sigma_{SFR} / \Sigma_{SFR,MW} \right)^{1/2} [MS]$$

$$B = 3 \mu G \left( \Sigma_{SFR} / \Sigma_{SFR,MW} \right)^{1/2} [SB]$$

### Predicted FIR-Radio Correlation



#### Predicted FIR-Radio Correlation



#### Predicted FIR-Radio Correlation



# Predicted γ-ray spectra



# Predicted γ-ray spectra



## (Most) Radiation Backgrounds From Star-Forming Galaxies



# (Most) Radiation Backgrounds From Star-Forming Galaxies



#### Radio Source Counts



#### Radio Source Counts



### IR Source Counts



### The Radio Background



## The Radio Background



### No ARCADE Excess



### No ARCADE Excess



### The Gamma-Ray Background



## The Gamma-Ray Background



## The Neutrino Background



## The Neutrino Background



### Future Improvements

```
X-rays
```

X-ray binaries for hard X-rays

Hot gas for soft X-rays

Very low frequency radio

Free-free absorption from H II regions

Transition radiation (kHz)

Ultra high energy CRs

Photo-pion radiation from starbursts?