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Outline 

• Motivation 
• Pulsar signals and the ISM 
• Intro to cyclic spectroscopy – what is it? 
• Deconvolution with CS 
• Results from real observations 
• How well can we expect CS deconvolution to 

perform? 
• Towards routine use of CS 



Motivation: Improving pulsar timing 
• Careful measurement of time of arrival of pulsar signals 

provides a unique probe of exotic physics. 
• Time of arrival accuracy scales as SNR / width 
• Pulsars typically have steep spectra  would like to 

observe at lowest frequencies 
• But… at frequencies below ~1 GHz, pulsar time of arrival 

estimation is strongly influenced by scattering in the 
interstellar medium (scales ~f-4.4) 

• Projects like NANOgrav need more pulsars which can be 
accurately timed 



Effects of the ISM 

• Dispersion (total electron content) 
• Diffraction 
• Refraction 



Need to monitor the ISM! 

Hemberger & Stinebring 2008 
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Motivation: Deconvolving the ISM 
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The dream… 



Intro to pulsar signals 

h(t) 

Idealized pulsar signal 

More realistic pulsar signal After convolution 

v(t) v(t)*h(t) 



A more realistic transfer function 

h(t) v(t)*h(t) 

|v(t)*h(t)|^2 



Aside: What does ISM scattering look like? 
Phase perturbations from clumpy ISM Electric field at earth 

Dynamic spectrum 
Impulse response functions 
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Evolving complex impulse response 
function 
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Pulse profiles and Harmonics 

B1937+21 J1909-3744 

Plots from P. Demorest PhD 
thesis 



Intro to cyclic spectrscopy: 
A simple simulated example 

h(t) 



Traditional spectrum of filtered noise: 
Only magnitude is retained 

)()()( 2 ννν xy SHS =

Observed signal 
ISM scattering 

Original pulsar  
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Cyclic spectrum of filtered cyclostationary noise: 
Phase information can be retrieved! 

)()()( 2 ννν xy SHS =
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ISM scattering 

Original pulsar  
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First application: B1937+21 at Arecibo 

• Single 4 MHz subband using ASP @ 430 MHz 
• Demorest 2011 arXiv:1106.3345 



B1937+21 Deconvolution step-by-step 



Iteration 2 



Iteration 3 



Iteration 4 



Iteration 5 



Iteration 6 



Iteration 7 



Iteration 8 



Iteration 9 



Iteration 10 



Iteration 31 



Second dataset: J1713+0747 at Arecibo 

• 327 MHz, 430 MHz, and 1400 
MHz 

• 10 MHz subbands 
• Best timing NANOGrav pulsar 

(~40 ns RMS) 
• Nipuni Palliyaguru leading 

this effort 

1400 MHz 430 MHz 

327 MHz 



J1713+0747 Iteration 1 



J1713+0747 Iteration 10 



J1713+0747 Iteration 18 



J1713+0747 Iteration 30 



How well can we realistically expect CS 
deconvolution to “work”? 

• Need to define success criteria 
– Improving timing precision 
– Determine amplitude AND phase of transfer function 
– Determine amplitude of transfer function 

• Limitations are determined by nature more than by 
instrumentation 
– Bandwidth set by scintillation bandwidth 
– Integration time set by scintillation timescale 
– Harmonic content determined by pulse profile 
– Flux determined by pulsar 
– Pulse period determines number of realizations of self-

noise per scintillation timescale 



P-DM Regimes for Deconvolution 
Based on empirical DM-Scattering relation 

Nb = 100 

Slide credit: Jim Cordes 



P-DM Regimes for Deconvolution 
Nb = 104 

Slide credit: Jim Cordes 



Simulations 

• Use simcyc code to simulate pulse profiles and 
transfer functions. Then compute CS 

• Add noise to CS and attempt deconvolution 
• Compare resulting transfer function to initial 

transfer function 
• Experimented with a range of parameters 



Sharp profile, short period, moderate scattering 
 decent recovery 



Sharp profile, longer period, significant 
scattering  partial recovery 



Wide profile, long period, moderate 
scattering  poor recovery 



Sharp profile, long period, slight 
scattering  recovery possible 



Other applications: Improved 
estimation of ISM scattering 

• Cyclic spectroscopy 
gives us high time 
AND frequency 
resolution 

• Improved resolution 
of ISM features 



Importance of time/frequency resolution: 
Dynamic spectrum from routine PUPPI observation of 

J1944+0907 
• 1.5625 MHz 
•  640 ns  ~2048 bins for 1.5 ms pulsar 
• (5 ms pulsar, 2048 bins, could do ~ 0.5 MHz channels) 



Dynamic spectrum from real-time 
cyclic spectrometer observation of 

J1944+0907 
• 1953 Hz resolution 
• Currently 2us time resolution, could easily be 

640 ns 



Analyzing dynamic spectra 



What’s next? 
We need real-time cyclic spectroscopy 

• Current observations involve recording TBs of raw 
voltage data  not sustainable 

• Once the data is recorded, processing takes for-ever 
( real time processing be limited to very small 
bandwidths) 

• Correlation has high arithmetic intensity: well suited 
to GPUs 

• Have implemented an overlapping filterbank front-
end to avoid losses at subband edges 



GPU CS performance summary: 
10-20 MHz per GPU node 
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Over-sampled Filterbank: (OSF) 
Hardware setup at Arecibo 
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Over-sampled Filterbank: (OSF) 
(Coming soon to GBT) 

GUPPI 
iBOBs + BEE2 
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Overlapping, over-sampled filterbank 

Red channels processed by one GPU, 
Blue channels processed by the next. 
Each GPU gets 32 channels = 16 MHz 

Features line up 
perfectly 
between red 
and blue 
filterbanks 



Overlapping filterbank: 
Merge to get complete cyclic spectrum 

B1937+21, 430 MHz 



CS provides precision RFI excision 



We will be getting this kind of cyclic spectroscopy data 
on ~40+ pulsars every ~20-30 days! 



We will be getting this kind of cyclic spectroscopy data 
on ~40+ pulsars every ~20-30 days! 



Other upcoming observations –  
J1643-1224 @ GBT 

• Bright pulsar with unusually high RMS timing residual 
– one of the worst in the NANOGrav sample 

• Significant scattering 
•  Hopefully a good candidate for correction! 
• 12 hours awarded to observe at 350, 820, and 1400 

MHz at multiple epochs 



Simulation of J1643-1224 deconvolution 



Conclusions 
• Cyclic spectroscopy is a fascinating technique for studying 

pulsars and the interstellar medium. 
• Coherent deconvolution is promising but there is no free 

lunch. 
• Still very much under development; many avenues to pursue 

in intelligently constraining the optimization. 
• Not guaranteed to “work” for any pulsar at any frequency: 

More observations underway! 
• Exact deconvolution is difficult, but CS has other uses: RFI 

removal, excellent estimates of magnitude of transfer 
function 

• Hardware advances will allow it to be used routinely 



Software for CS computation, 
deconvolution, and simulation 

• CS computation: 
– dspsr http://dspsr.sourceforge.net/ (van Straten et al.) 
– Cudacyclo branch at https://github.com/gitj/dspsr : my 

effort to add GPU computation of CS 
• Deconvolution: 

– CyclicModelling – Demorest and Walker: 
https://github.com/demorest/Cyclic-Modelling 

– pycyc & simcyc : my port of CyclicModelling to python with 
simulation capabilities: https://github.com/gitj/pycyc 

– Direct phase integration: Palliyaguru & Stinebring. Not yet 
released 

https://github.com/gitj/dspsr
https://github.com/demorest/Cyclic-Modelling
https://github.com/gitj/pycyc
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