Data Management and Distribution - Overview
Large Facilities Workshop

Brian Glendenning
NRAO Data Management and Software Department

Atacama Large Millimeter/submillimeter Array
Karl G. Jansky Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array
Why Data Management?

• No Choice – mandates ratcheting up
 – NSF Data Management Plan requirements, OSTP data access memo
 – What taxpayers pay for should be freely available
• Review survival
 – People like me will write nasty recommendations if you don’t have it (*)
• Science Return = Facility self-Interest
 – Data-use multiplier
 • STScI Archive: Data comes out 5x
 – Cost effective!
 • ALMA: ~3% construction (LSST ~25%), ~8% operations

NSF: No more facilities without strong data management plans ()

You don’t want comments like this, even from your token
softaware/data management panel member
Data Products

• Expand your user base, provide automatically-generated, widely usable derived data products

• Also provide raw data products (experts will demand it, some analyses will require it, someone needs to build the next generation of instruments)

• NEON: Level 0=raw, 1=simple calibration, 2=gap filled, 3=gridded, 4=derived, multi-source

• Try to define your QA parameters up front (someday someone will do this…)

• What to do about PI generated data products (make available through facility? Leave to PI Data Management Plan?)

• Data should be transportable to other software systems, and the future
 – Define using file formats, not APIs (data outlives software)
Data Volume

• Drown in data later, get the system to work now
• Pareto’s Principle works for data as well; more data = more science, but not linear
• Moore’s law is your friend
 – Easier every year ($100 becomes $0.10 in 15 years); or
 – More data/processing every year for fixed budget
 • ALMA: Average data rate can increase by 100x
 – Algorithms usually get more expensive (FLOPS/IO) with time
Other

• Open Source facility software – under threat?
 – In astronomy has been a tremendous benefit in last 15+ years
 – Pressure to monetize, gain advantage over competitors

• Allow anonymous access to (non-proprietary) data, even if it gets in the way of metrics
 – EarthScope iPad application example

• Many “pure IT” issues: Reliability/availability, Disaster recovery, Backup, Security, Privacy (do you really want to be a data center?)

• Data/Computing facilities: in-house vs. center vs. cloud decisions, cost/benefits not being systematically (re)considered
 – Role for NSF to facilitate?

• End of Life – will your data outlive your facility? Vice versa?
Questions

• What should NSF Facility “Data Management” best practices be?
 – Can/should this be formalized?

• How do we keep data management systems in construction project scope?
 – Often thrown out to obtain only modest cost savings
 – Construction projects often dominated by grizzled veterans
 • Data Management = chart recorder + HP-11C

• Can the various national HPC centers/networks play more of a role?
 – Gap: big-ish data problems, hard for facility but not interesting for HPC research

• What metrics should we use?