The IPAC Research Archives

Steve Groom
IPAC / Caltech

http://irsa.ipac.caltech.edu/
IPAC overview

The Infrared Processing and Analysis Center (IPAC) at Caltech is dedicated to science operations, data archives, and community support for astronomy and solar system science missions, with a historical emphasis on infrared-submillimeter astronomy and exoplanet science.

IPAC is entering its 30th year of building and operating successful data centers and research archives for space- and ground-based astronomical observatories and large-scale survey programs.

The IRAS mission surveyed the infrared sky in 1983.
IPAC Activities

- NASA/IPAC Infrared Science Archive (IRSA)
- NASA Extragalactic Database (NED)
 - NASA’s “Google for galaxies”
- NASA Exoplanet Science Institute (NExScI)
 - Exoplanet Archive
 - Keck Observatory Archive (KOA)
- Archives Education and Public Outreach
 - NASA/IPAC Teacher Archive Research Program (NITARP)
 - Astropix archive of astrophysical images.
IPAC Activities (2)

IPAC is also home to:

- Spitzer Space Telescope Science Center
- NASA Herschel Science Center
- NASA/US Planck Data Center
- Las Cumbres Observatory Global Telescope (LCOGT) Archive
- Palomar Transient Factory (PTF) Archive

2013: Planck produces most precise map of the early universe
IRSA Overview

IRSA is NASA’s IR/sub-mm archive
- Began with IRAS and 2MASS, leading into the decade of IR missions
 - Spitzer Space Telescope
 - Wide-Field Infrared Survey Explorer (WISE)
 - NASA Planck Archive

IRSA also provides access to many other mission datasets, including some hosted at other institutions, brought together for the convenience of researchers.
Purposes behind archiving

- Permits others to exploit data – now and into the future
 - For many mission datasets, papers produced from archival research outnumber those from original science teams

- Provides efficient access to mission data to enable research that has not yet been envisioned

The most important questions our users want answered are:

- “How do I get (and use) my data?”
- “Whom do I ask if I have a problem?”
Archiving involves:

- Data curation
- Data access
- Documentation
- Tools for data reduction, analysis
- User support

All are important to ensure usefulness of the data
Data access models

- **Find**: Discovery/Inventory—what’s available?
- **Query**: Detailed, dataset-specific query
 - Find records/images matching constraints
- **Combine**: Multi-dataset query
 - Display data from multiple datasets together
- **Mine**: Bulk query
 - Upload list of search positions or other criteria
- **Retrieve**: Bulk dataset download
 - Give me the whole thing
- **Remote Access**: Direct external access
 - “Can I just have my program connect directly to your database?”
Archive Architecture

- Ingestion & Validation
- Storage, Indexing
- Reusable search engines
 - Catalogs
 - Image/extended spatial
- Product retrieval
 - Also on-demand generation (e.g. image cutout, mosaic)
- Program (VO) interfaces
- Web UI’s
- Support for external UI’s
IRSA’s common architecture supporting other activities

- NExScI – Exoplanet Archive, Kepler Science Analysis System
- Keck Observatory Archive
 - 20 years of observations
- Solar System – NEOWISE
- Non-NASA:
 - P60, PTF
 - LCOGT
 - LSST
 - TCCON (Atmospheric research)
Questions to ask in archive design

- **What are the products?**
 - Standard levels of processing/calibration/reduction?
- **What are the use cases for search & retrieval?**
- **What are the units for data packaging, query, retrieval?**
- **What can be queried?**
 - Metadata – date, instrument, position, etc
 - Pre-calculated summary metrics/statistics
 - Measurement data
 - Derived/calculated properties, combinations of data
- **Any proprietary data considerations?**
 - Mixing public and private data within the archive can greatly complicate handling of queries involving summary information
Questions - 2

- Who needs access to the data?
- When do they need access?
 - Real or Near-real time – notification, event distribution: a topic all to itself!
 - Hours/Days/Months/Years later
- Acceptable query latency?
 - Interactive vs batch-style queries
- Anticipated usage/volume
Archive Considerations

- Consistency of formats & organization
- Completeness/Correctness of data
 - Initial validation is important
- Completeness of documentation
- Examples are helpful!
 - Data reduction “cookbooks”
 - User tutorials, workshops

- Important for the long haul:
 - Consider longevity of technologies, data formats, programming languages/systems
 - Media lifetime, periodic refresh
Trends: Rapid evolution of information-handling systems

- Technology for data handling changes even more quickly than technologies for photon gathering
- Fast Internet everywhere
- Extremely portable disks and drives
- Grid computing and protocols for remote analysis
- The cloud
Trends: Archives as analysis environments

- **Browse-and-download**
 - Identify data of interest, take it home for further study

- **Complex queries**
 - Finding “interesting” data within large datasets

- **In-database analysis?**
 - More complex queries over larger data volumes
 - Data size growing faster than communications
 - Bringing the software to the data?
 - “’Big Data’ means you can’t move it.”
Common Formats and Tools

- Catalogs – tabular data
- Images – usually as FITS files
- Spectra
- Time-series photometry - light curves
Configurable user interfaces

Decreases the costs of setting up access to new data sets and the costs of long-term maintenance. Provides unified user experience.
Summary

- Preservation of science data products as well as lower-level products enhances future research
 - Can’t predict all potential use cases

- Reusable building blocks can effectively support a wide range of use cases

- Distinct perspectives for rapid vs long-term utilization
 - Fast observation followup vs future data mining
 - Discovery vs research use cases