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Why Interferometry? 

• Because of Diffraction:  For an aperture of diameter D, and at 

wavelength l, the image resolution is  

 

• In ‘practical’ units: 

 

• To obtain 1 arcsecond resolution at a wavelength of 21 cm, we 

require an aperture of ~42 km!    

• The (currently) largest single, fully-steerable apertures are the 

100 meter antennas near Bonn, and at Green Bank.   

• So we must develop a method of synthesizing an equivalent 

aperture.      

•  The methodology of synthesizing a continuous aperture through 

summations of separated pairs of antennas is called ‘aperture   

synthesis’.   



The Single Dish – as in Interferometer 

• A parabolic reflector has a power response (vs angle) 
roughly as shown below.   

• The formation of this response follows the same laws of 
physics as an interferometer.   

• A basic understanding of the origin of the focal response 
will aid in understanding how an interferometer works.   

Illustrated here is the 

approximate power response of 

a 25-meter antenna, at n = 1 

GHz. 



The Parabolic Reflector 

• The parabola has the remarkable property of directing  

all rays from in incoming wave front to a single point  

(the focus), all with the same distance. 

• Hence, all rays arrive at the focus with the same phase. 

• Key Point:  Distance from incoming phase front to focal point is the 

same for all rays. 

• The E-fields will thus all be in phase at the focus – the place for the 

receiver.   



Beam Pattern Origin   
(1-Dimensional Example) 

•  An antenna’s 

response is a 

result of coherent 

vector summation 

of the electric field 

at the focus. 

•  First null will 

occur at the angle 

where one extra 

wavelength of path 

is added across 

the full width of the 

aperture: 

 q ~ l/D  

 (Why?)    

On-axis 

incidence 

Off-axis 

incidence 



Specifics:  First Null, and First Sidelobe 

• When the phase differential across the aperture is 1, 2, 3, … wavelengths, 

we get a null in the total received power.   

– The nulls appear at (approximately):  q = l/D, 2l/D, 3l/D, … radians. 

• When the phase differential across the full aperture is ~1.5, 2.5, 3.5, … 

wavelengths, we get a maximum in total received power. 

– These are the ‘sidelobes’ of the antenna response.   

– But, each successive maximum is weaker than the last.   

– These maxima appear at (approximately): q = 3l/2D, 5l/2D, 7l/2D, … radians. 
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•  We don’t need a single 

parabolic structure. 

 

•  We can consider a series 

of small antennas, whose 

individual signals are 

summed in a network. 

 

•  This is the basic concept 

of interferometry.   

 

•   Aperture Synthesis is an 

extension of this concept. 

Interferometry – Basic Concept 
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Quasi-Monochromatic Radiation 

• Analysis is simplest if the fields are perfectly monochromatic.   

• This is not possible – a perfectly monochromatic electric field 

would both have no power (Dn = 0), and would last forever.  

• So we consider instead ‘quasi-monochromatic’ radiation, where 

the bandwidth dn is very small. 

• For a time dt ~1/dn, the electric fields will be sinusoidal.     

• Consider then the electric fields from a small sold angle dW about 

some direction s, within some small bandwidth dn, at frequency n. 

• We can write the temporal dependence of this field as: 

 

• The amplitude and phase remains unchanged to a time duration  

of order dt ~1/dn,  after which new values of A and f are needed.   



Simplifying Assumptions 

• We now consider the most basic interferometer, and seek a 
relation between the characteristics of the product of the voltages 
from two separated antennas and the distribution of the brightness 
of the originating source emission.     

• To establish the basic relations, the following simplifications are 
introduced: 

– Fixed in space – no rotation or motion 

– Quasi-monochromatic (signals are sinusoidal) 

– No frequency conversions (an ‘RF interferometer’) 

– Single polarization 

– No propagation distortions (no ionosphere, atmosphere …) 

– Idealized electronics (perfectly linear, no amplitude or phase 
perturbations,  perfectly identical for both elements,  no added 
noise, …) 



Symbols Used, and their Meanings 

• We consider: 

– two identical sensors, separated by vector distance b 

– receiving signals from vector direction s 

– at frequency n (angular frequency w = 2pn) 

• From these, the key quantity  

 

 

           is formed.  This is the ‘geometric time delay’ – the extra time 

taken for the signal to reach the more distant sensor.   

• Finally,  the phase corresponding to this extra distance is defined: 
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The Stationary, Quasi-Monochromatic  

Radio-Frequency Interferometer 

X 

s s 

b 

multiply 

average 

The path lengths 

from sensors  

to multiplier are 

assumed equal! 

Geometric  

Time Delay 

Rapidly varying,  

with zero mean 

Unchanging 
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Pictorial Example:  Signals In Phase 
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•Antenna 1 

Voltage 

 

•Antenna 2 

Voltage 

 

•Product 

Voltage 

 

•Average 

2 GHz Frequency, with voltages in phase:   

b.s = nl, or tg = n/n 



Pictorial Example:  Signals in Quad Phase 
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•Antenna 1 

Voltage 

 

•Antenna 2 

Voltage 

 

•Product 

Voltage 

 

•Average 

2 GHz Frequency, with voltages in quadrature phase:   

b.s=(n +/- ¼)l, tg = (4n +/- 1)/4n 



Pictorial Example:  Signals out of Phase 
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•Antenna 1 

Voltage 

 

•Antenna 2 

Voltage 

 

•Product 

Voltage 

 

•Average 

2 GHz Frequency, with voltages out of phase:   

b.s=(n +/- ½)l       tg = (2n +/- 1)/2n 
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Some General Comments 

• The averaged product RC is dependent on the received power, P = 

E2/2 and geometric delay, tg, and hence on the baseline orientation 

and source direction: 
 

 
 

 

• Note that RC is not a a function of:  
– The time of the observation -- provided the source itself is not variable. 

– The location of the baseline -- provided the emission is in the far-field. 

– The actual phase of the incoming signal – the distance of the source 

does not matter, provided it is in the far-field.   
 

• The strength of the product is dependent on the antenna collecting 

areas and electronic gains – but these factors can be calibrated for. 
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Pictorial Illustrations 

• To illustrate the response, expand the dot product in one dimension:   

 

 

• Here, u = b/l is the baseline length in wavelengths, and q is the 

angle w.r.t. the plane perpendicular to the baseline.   

•                               is the direction cosine 

 

 

 

 

 

• Consider the response Rc, as a function of angle, for two different 

baselines with u = 10, and u = 25 wavelengths: 

a 

b 

s 

q 

)20cos( lR
C

p=

qa sincos ==l



Whole-Sky Response 

• Top:    u = 10  

 

  There are 20 whole 

fringes over the 

hemisphere.   

Peak separation 1/10 

radians 

 

• Bottom:    u = 25  

 

  There are 50 whole 

fringes over the 

hemisphere.   

Peak separation 1/25 

radians.   
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-25 25 

)20cos( lR
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p=



From an Angular Perspective 

Top Panel: 

The absolute value of the 

response for u = 10, as a 

function of angle.   

The ‘lobes’ of the response 

pattern alternate in sign.  

 

Bottom Panel: 

The same, but for u = 25. 

Angular separation between 

lobes (of the same sign) is 

    dq ~ 1/u = l/b radians. 
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Hemispheric Pattern 

• The preceding plot is a meridional cut 

through the hemisphere, oriented along 

the baseline vector.   

• In the two-dimensional space, the fringe 

pattern consists of a series of coaxial 

cones, oriented along the baseline vector.  

• The figure is a two-dimensional 

representation when u = 4.    

• As viewed along the baseline vector, the 

fringes show a ‘bulls-eye’ pattern – 

concentric circles.   
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The Effect of the Sensor 

• The patterns shown presume the sensor (antenna) has 

isotropic response.   

• This is a convenient assumption, but doesn’t represent reality. 

• Real sensors impose their own patterns, which modulate the 

amplitude and phase, of the output.   

• Large antennas have very high directivity -- very useful for 

some applications.   



The Effect of Sensor Patterns 

• Sensors (or antennas) 

are not isotropic, and 

have their own 

responses.   

 

• Top Panel:  The 

interferometer pattern 

with a cos(q)-like 

sensor response.   

 

• Bottom Panel:  A 

multiple-wavelength 

aperture antenna has a 

narrow beam, but also 

sidelobes.   
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The Response from an Extended Source 

• The response from an extended source is obtained by summing the 

responses at each antenna to all the emission over the sky, multiplying 

the two, and averaging: 

 

  

• The averaging and integrals can be interchanged and, providing the 

emission is spatially incoherent, we get 

 

 

 

• This expression links what we want – the source brightness on the 

sky, In(s),  – to something we can measure - RC, the interferometer 

response. 

• Can we recover In(s) from observations of RC? 



A Schematic Illustration in 2-D 
• The correlator can be thought of ‘casting’ a cosinusoidal coherence pattern, of 

angular scale ~l/b radians, onto the sky.  
 

• The correlator multiplies the source brightness by this coherence pattern, 
and integrates (sums) the result over the sky.   

 
• Orientation set by baseline 

geometry. 

• Fringe separation set by 

(projected) baseline length and 

wavelength.  
• Long baseline gives close-packed 

fringes 

• Short baseline gives widely-

separated fringes 

• Physical location of baseline 

unimportant, provided source is in 

the far field.   
   -   +   -   +  -  +   -      

         Fringe Sign 

l/b rad. 

Source 

brightness 

l/b 
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A Short Mathematics Digression –  

Odd and Even Functions 

• Any real function, I(x,y), can be expressed as the sum of two real 

functions which have specific symmetries: 

 
 

 

 

An even part: 

 
 

An odd part:     
 

= + 
I 

IE IO 
I IE IO 
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Why One Correlator is Not Enough 

• The correlator response, Rc: 

 

 

 is not enough to recover the correct brightness.  Why? 

• Only the even part of the distribution is seen.   

• Suppose that the source of emission has a component with odd 
symmetry: 

                      Io(s) = -Io(-s)  

• Since the cosine fringe pattern is even, the response of our 
interferometer to the odd brightness distribution is 0. 

 

 

• Hence, we need more information if we are to completely 
recover the source brightness.   



Why Two Correlations are Needed 

• The integration of the cosine response, Rc, over the source 

brightness is sensitive to only the even part of the brightness: 

 

 

 since the integral of an odd function (IO) with an even function 

(cos x) is zero.   

 

• To recover the ‘odd’ part of the brightness, IO, we need an ‘odd’ 

fringe pattern.  Let us replace the ‘cos’ with ‘sin’ in the integral 

 

 

     since the integral of an even times an odd function is zero.   

 

• To obtain this necessary component, we must make a ‘sine’ 

pattern.   How? 



Making a SIN Correlator 

• We generate the ‘sine’ pattern by inserting a 90 degree phase shift 

in one of the signal paths. 

X 

s s 

A Sensor 
b 

multiply 

average 

90o 



Define the Complex Visibility 
• We now DEFINE a complex function,  the complex visibility,  V, from the 

two independent (real) correlator outputs RC and RS: 

 
 

where  

 

 

 

 

• This gives us a beautiful and useful relationship between the source 

brightness, and the response of an interferometer: 

 

 

 

• With the right geometry, this is a 2-D Fourier transform, giving us a well 

established way to recover I(s) from V(b). 



The Complex Correlator and Complex 

Notation 

• A correlator which produces both ‘Real’ and ‘Imaginary’ parts – or the 

Cosine and Sine fringes, is called a ‘Complex Correlator’ 

– For a complex correlator, think of two independent sets of projected 

sinusoids, 90 degrees apart on the sky. 

– In our scenario, both components are necessary, because we have assumed 

there is no motion – the ‘fringes’ are fixed on the source emission, which is 

itself stationary.   

• The complex output of the complex correlator also means we can use 

complex analysis throughout:   Let: 
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Wideband Phase Shifters – Hilbert Transform 

• For a quasi-monochromatic signal, forming a the 90 degree 

phase shift to the signal path is easy --- add a piece of cable 

l/4 wavelengths long.   

• For a wideband system, this obviously won’t work.   

• In general, a wideband device which phase shifts each spectral 

component by 90 degrees, while leaving the amplitude intact, 

is a Hilbert Transform. 

• For real interferometers, such an operation can be performed 

by analog devices. 

• Far more commonly, this is done using digital techniques.   

• The complex function formed by a real function and its 

Hilbert transform is termed the ‘analytic signal’.   
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Picturing the Visibility 
• The source brightness is Gaussian, shown in black. 

• The interferometer  ‘fringes’ are in red.   

• The visibility is the integral of the product – the net dark green area. 

RS 

Long 

Baseline 

Short 

Baseline 

Long Baseline 

Short Baseline 

RC 
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Examples of 1-Dimensional Visibilities 
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• Simple pictures are easy to make illustrating 1-dimensional visibilities. 

                               Brightness Distribution             Visibility Function 

• Unresolved 

Doubles 

 

 

 

• Uniform 

 

 

 

• Central 

Peaked 



More Examples 
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• Simple pictures are easy to make illustrating 1-dimensional visibilities. 

                               Brightness Distribution             Visibility Function 

 

• Resolved 

Double 

 

 

• Resolved 

Double 

 

• Central 

Peaked 

Double 



Another Way to Conceptualize … 

• For those of you adept in thinking in terms of complex 

functions, another way to picture the effect of the 

interferometer may be attractive … 

• The interferometer casts a *phase slope* across the (real) 

brightness distribution.   

– The phase slope becomes steeper for longer baselines, or 

higher frequencies,  and is zero for zero baseline. 

– The phase is zero at the phase origin.   

– The amplitude response is unity (ignoring the primary 

beam) throughout.   

• The Visibility is the complex integral of the brightness times 

the phase ramp.   
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The Complex Integral 

2p 

l = sin q 1/u 

Amplitude 



Basic Characteristics of the Visibility 

• For a zero-spacing interferometer, we get the ‘single-dish’ 
(total-power) response.   

• As the baseline gets longer, the visibility amplitude will in 
general decline.   

• When the visibility is close to zero, the source is said to be 
‘resolved out’.   

• Interchanging antennas in a baseline causes the phase to be 
negated – the visibility of the ‘reversed baseline’ is the 
complex conjugate of the original.  (Why?) 

• Mathematically, the visibility is Hermitian.  (V(u) = V*(-u)).   



• The Visibility is a unique function of the source brightness. 

• The two functions are related through a Fourier 

transform. 

• An interferometer, at any one time, makes one measure of 

the visibility, at baseline coordinate (u,v). 

• `Sufficient knowledge’ of the visibility function (as derived 

from an interferometer) will provide us a `reasonable 

estimate’ of the source brightness.   

• How many is ‘sufficient’, and how good is ‘reasonable’?   

• These simple questions do not have easy answers… 

Some Comments on Visibilities 
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